Synthesis of magnetic core-shell Fe3O4-Mn3O4 composite for degradation of sulfadiazine via peroxymonosulfate activation: Characterization, mechanism and toxicity analysis

降级(电信) 催化作用 复合数 磺胺嘧啶 氧化剂 化学 化学工程 电子顺磁共振 核化学 材料科学 复合材料 有机化学 工程类 抗生素 物理 电信 生物化学 核磁共振 计算机科学
作者
Jing Chen,Kun Chu,Shiquan Sun,Hong Chen,Binghao Song,Jianhui Wang,Zidan Liu,Lei Zhu
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:11 (1): 109230-109230 被引量:31
标识
DOI:10.1016/j.jece.2022.109230
摘要

Sulfate radical based AOPs (SR-AOPs) have been utilized as a promising technology for refractory organic pollutants treatment. In this research, a novel magnetic core-shell Fe3O4-Mn3O4 composite was fabricated through a two-step hydrothermal method and then its surface structure, morphology and magnetism were characterized. The composite was introduced for efficient degradation of sulfadiazine (SDZ) via peroxymonosulfate (PMS) activation. Compared with pure Fe3O4 and Mn3O4, Fe3O4-Mn3O4 exhibited higher catalytic performance to eliminate SDZ. In the batch experiments, 20 μM of SDZ could be completely removed in 20 min with 0.8 mM PMS, 0.15 g/L catalyst dosage under a pH scope of 3.0–11.0. Both Cl¯ and H2PO4¯ displayed slightly inhibition effect on SDZ degradation efficiency, while HA could significantly reduce the degradation efficiency. In the successive tests, Fe3O4-Mn3O4 exhibited outstanding stability and good reusability. Even after four runs, the SDZ degradation efficiency still reached to 94.3%. Scavenging tests and electron paramagnetic resonance (EPR) results revealed that the active species formed during the Fe3O4-Mn3O4/PMS system were SO4• and •OH. The degradation mechanism was proved to be the redox reactions between Mn(Ⅱ)/Mn(Ⅲ)/Mn(Ⅳ), Fe(Ⅱ)/Fe(Ⅲ) and the synergistic effect of Mn(Ⅲ)/Fe(Ⅱ). Moreover, six intermediates were detected and three possible SDZ degradation pathways in the Fe3O4-Mn3O4/PMS system were explored. The toxicity of SDZ and intermediates were evaluated by ECOSAR program as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Xu发布了新的文献求助10
1秒前
耍酷的香菇完成签到 ,获得积分10
1秒前
zyh915发布了新的文献求助20
1秒前
陈杰完成签到,获得积分10
1秒前
panng发布了新的文献求助10
2秒前
2秒前
jhz发布了新的文献求助10
3秒前
zsw发布了新的文献求助30
3秒前
酷波er应助初柒采纳,获得10
3秒前
4秒前
wxhy完成签到,获得积分10
4秒前
大模型应助zhang采纳,获得10
4秒前
5秒前
claude发布了新的文献求助10
5秒前
Hiker发布了新的文献求助10
5秒前
5秒前
小马甲应助木木采纳,获得10
6秒前
7秒前
xiaozhizhu完成签到,获得积分10
7秒前
甄世凡发布了新的文献求助10
7秒前
充电宝应助claude采纳,获得10
8秒前
科研123发布了新的文献求助10
8秒前
lllll发布了新的文献求助10
8秒前
集典发布了新的文献求助10
9秒前
orixero应助wxhy采纳,获得10
9秒前
充电宝应助cccyyb采纳,获得10
9秒前
9秒前
芋泥发布了新的文献求助10
10秒前
13秒前
13秒前
14秒前
SciGPT应助zhang采纳,获得10
14秒前
15秒前
16秒前
16秒前
16秒前
ljys发布了新的文献求助10
17秒前
17秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Finite Groups: An Introduction 800
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3909229
求助须知:如何正确求助?哪些是违规求助? 3455081
关于积分的说明 10881906
捐赠科研通 3180924
什么是DOI,文献DOI怎么找? 1757526
邀请新用户注册赠送积分活动 850235
科研通“疑难数据库(出版商)”最低求助积分说明 791999