Enhancing antibody-antigen interaction prediction with atomic flexibility

作者
Sara Joubbi,Alessio Micheli,Paolo Milazzo,Giorgio Ciano,Stéphane M. Gagné,Píetro Lió,Duccio Medini,Giuseppe Maccari
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:21 (10): e1013576-e1013576
标识
DOI:10.1371/journal.pcbi.1013576
摘要

Antibodies are indispensable components of the immune system, known for their specific binding to antigens. Beyond their natural immunological functions, they are fundamental in developing vaccines and therapeutic interventions for infectious diseases. The complex architecture of antibodies, particularly their variable regions responsible for antigen recognition, presents significant challenges for computational modeling. Recent advancements in deep learning have markedly improved protein structure prediction; however, accurately modeling antibody-antigen (Ab-Ag) interactions remains challenging due to the inherent flexibility of antibodies and the dynamic nature of binding processes. In this study, we examine the use of predicted Local Distance Difference Test (pLDDT) scores as indicators of residue and side-chain flexibility to model Ab-Ag interactions through a fingerprint-based approach. We demonstrate the significance of flexibility in different antibody-specific tasks, enhancing the predictive accuracy of Ab-Ag interaction models by 4%, resulting in an AUC-ROC of 92%. In addition, we showcase state-of-the-art performance in paratope prediction. These results emphasize the importance of accounting for conformational flexibility in modeling antibody-antigen interactions and show that pLDDT can serve as a coarse proxy for these dynamic features. By optimizing antibody flexibility using pLDDT, they can be engineered to improve affinity or breadth for a specific target. This approach is particularly beneficial for addressing highly variable pathogens like HIV and SARS-CoV-2, as greater flexibility enhances tolerance to sequence variations in target antigens.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助欣喜战斗机采纳,获得10
1秒前
zzz发布了新的文献求助10
2秒前
腾桑完成签到,获得积分10
2秒前
whwh完成签到,获得积分10
3秒前
国泰民安完成签到,获得积分10
4秒前
杨希妍发布了新的文献求助10
4秒前
靴子发布了新的文献求助10
4秒前
5秒前
goftmac发布了新的文献求助10
5秒前
英姑应助嘎嘎鸭采纳,获得10
6秒前
momo完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
乐乐应助做好胶水采纳,获得10
8秒前
8秒前
Jasper应助RANQIAO采纳,获得10
9秒前
9秒前
9秒前
李白发布了新的文献求助50
9秒前
11秒前
11秒前
12秒前
欢欢发布了新的文献求助10
12秒前
想学习发布了新的文献求助10
13秒前
活泼的梦凡完成签到,获得积分10
13秒前
14秒前
大个应助kk_iris采纳,获得10
14秒前
奋斗花生发布了新的文献求助10
14秒前
zzd发布了新的文献求助10
14秒前
14秒前
Owen应助归玖采纳,获得10
14秒前
吐丝麵包发布了新的文献求助10
15秒前
15秒前
风吹麦田应助轻松沛萍采纳,获得30
15秒前
kong完成签到,获得积分10
18秒前
Accepted发布了新的文献求助10
18秒前
18秒前
啵啵完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531254
求助须知:如何正确求助?哪些是违规求助? 4620100
关于积分的说明 14571639
捐赠科研通 4559623
什么是DOI,文献DOI怎么找? 2498523
邀请新用户注册赠送积分活动 1478518
关于科研通互助平台的介绍 1449953