An Intelligent System of Predicting Lymph Node Metastasis in Colorectal Cancer Using 3D CT Scans

结直肠癌 淋巴结转移 淋巴结 计算机科学 转移 医学 癌症 人工智能 放射科 病理 内科学
作者
Min Xie,Yi Zhang,Xinyang Li,Jiayue Li,Xingyu Zou,Yiji Mao,Haixian Zhang
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:2024 (1)
标识
DOI:10.1155/2024/7629441
摘要

In colorectal cancer (CRC), accurately predicting lymph node metastasis (LNM) contributes to developing appropriate treatment plans and serves as the key to long‐term survival of patients. In the clinical settings, preoperative LNM diagnosis in CRC predominantly depends on computed tomography (CT). Nevertheless, lymph nodes are small in size and difficult to identify on 3D CT scans, and CT‐based diagnosis of metastatic lymph nodes is prone to a significant misdiagnosis rate and lacks consistency across clinicians. Currently, there is no automatic system available for LNM prediction in CRC via 3D CT scans. In addition, existing deep learning‐ (DL‐) based lymph node detection models present low detection accuracy and high false‐positive rates, and most existing DL‐based lymph node metastasis prediction models mainly use tumor area characteristics but fail to adequately utilize lymph node information, thus not yielding satisfactory results. To tackle these issues, we propose an intelligent diagnosis system for this challenging task, mainly including a lymph node detection (LND) model and a lymph node metastasis prediction (LNMP) model. In detail, the LND model utilizes an encoder‐decoder network to detect lymph nodes, and the LNMP model employs an innovative attention‐based multiple instance learning (MIL) network. An instance‐level self‐attention feature enhancement module is designed to extract and augment lymph node features as a bag of instances. Furthermore, a bag‐level MIL prediction module is employed to extract instance features and create a bag representation for the ultimate LNM prediction. As far as we know, the proposed intelligent system represents the pioneering method for addressing this complex clinical challenge. In experiments, our proposed intelligent system achieves the AUC of 75.4% and the accuracy of 73.9%, showcasing a significant enhancement compared to physicians specialising in CRC and highlighting its strong clinical applicability. The accessible code can be found at https://github.com/SCU-MI/IS-LNM .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下次见完成签到,获得积分10
刚刚
1秒前
单纯访枫完成签到 ,获得积分10
2秒前
111完成签到,获得积分10
2秒前
柒月小鱼完成签到 ,获得积分10
2秒前
3秒前
3秒前
4秒前
4秒前
XYYX发布了新的文献求助10
5秒前
5秒前
浩浩完成签到 ,获得积分10
5秒前
桐桐应助yuxiao采纳,获得10
5秒前
黄雨果完成签到,获得积分10
5秒前
九九完成签到,获得积分10
6秒前
6秒前
cc发布了新的文献求助10
6秒前
所所应助lizz采纳,获得10
7秒前
情怀应助闪闪的夜阑采纳,获得10
7秒前
shanshanshan发布了新的文献求助50
7秒前
7秒前
7秒前
xpc发布了新的文献求助10
8秒前
hhh1发布了新的文献求助10
8秒前
Jason关注了科研通微信公众号
8秒前
vict发布了新的文献求助10
8秒前
LYSM应助miya采纳,获得10
8秒前
ingxiaiu完成签到,获得积分10
8秒前
甜蜜惊蛰应助kanglan采纳,获得10
9秒前
iNk应助月浅采纳,获得10
9秒前
踏实水之发布了新的文献求助10
9秒前
KKKK完成签到,获得积分10
9秒前
9秒前
赘婿应助勤奋映之采纳,获得10
9秒前
清爽的芹菜完成签到,获得积分10
9秒前
9秒前
soso完成签到,获得积分10
10秒前
11秒前
11秒前
科研顺利完成签到,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
聚丙烯腈纤维的辐射交联及对预氧化的影响 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3910787
求助须知:如何正确求助?哪些是违规求助? 3456483
关于积分的说明 10889923
捐赠科研通 3182768
什么是DOI,文献DOI怎么找? 1759314
邀请新用户注册赠送积分活动 850819
科研通“疑难数据库(出版商)”最低求助积分说明 792280