Bearing fault diagnosis method based on multi-domain feature fusion and heterogeneous network under small sample conditions

计算机科学 特征提取 模式识别(心理学) 人工智能 特征(语言学) 数据挖掘 预处理器 哲学 语言学
作者
Xiaoqiang Zhao,Sen Li
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4334445/v1
摘要

Abstract To solve the problems of insufficient feature extraction of the current methods under small sample conditions and loss of information in the process of signal transformation from different domains, a bearing fault diagnosis method based on multi-domain feature fusion and heterogeneous networks under small sample conditions is proposed. The method firstly designs the data preprocessing module to transform and combine the raw vibration signals into multi-domain signals by Fast Fourier Transform (FFT) and Gram Angle Field (GAF), which provides rich feature conditions for the subsequent feature extraction. Then, heterogeneous branch networks are designed for different domain signals used in low-dimensional feature extraction in the high-dimensional nonlinear space of fault data. When the inputs or intermediate processes of one branching network is interfered by the outside world, another branching network will play the role of error correction, which enhances the fault-tolerance of the proposed method. Next, in order to enhance the critical feature extraction capability of the heterogeneous network, the Location-Aware Channel Enhancement Block (LACEB) is designed. The LACEB learns the unique weights for different channels and different locations in the feature map by adaptively adjusting the dynamic factors and feature location parameters. Further, the memory unit in the global feature extraction module is used to learn the context information of each time step, and the dependency between the global features and the local features is effectively established. Finally, in order to prevent the model from falling into local optimal, a learning rate adaptive optimization algorithm is designed to optimize the model training process. A variety of strictly comparative experiments were tested on the CWRU dataset and the MFS dataset, concluding that this method is capable of performing fault diagnosis tasks in different environments and devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助森海采纳,获得10
刚刚
自然映梦完成签到,获得积分10
刚刚
刚刚
羽翼完成签到,获得积分10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
lit完成签到 ,获得积分10
3秒前
勇胜完成签到,获得积分10
4秒前
xiejinhui发布了新的文献求助10
4秒前
4秒前
5秒前
wwb完成签到,获得积分10
5秒前
路路完成签到,获得积分10
5秒前
忧伤的向日葵完成签到,获得积分10
5秒前
6秒前
6秒前
wyx发布了新的文献求助10
6秒前
毕业完成签到,获得积分10
7秒前
共享精神应助Fransic采纳,获得10
7秒前
123654完成签到 ,获得积分20
7秒前
Ddz完成签到,获得积分10
8秒前
昵称发布了新的文献求助10
9秒前
不安雁开发布了新的文献求助10
9秒前
wgy完成签到,获得积分20
9秒前
就而酒发布了新的文献求助10
10秒前
Ava应助风清月莹采纳,获得10
10秒前
领导范儿应助lee采纳,获得10
11秒前
星辰大海应助五十圆香芹采纳,获得10
11秒前
12秒前
135完成签到 ,获得积分10
12秒前
12秒前
12秒前
KK完成签到,获得积分10
13秒前
13秒前
光亮西牛完成签到 ,获得积分10
15秒前
斯文败类应助成就的白竹采纳,获得10
15秒前
iiiishu完成签到 ,获得积分10
15秒前
323431完成签到,获得积分10
15秒前
cc123完成签到,获得积分0
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441