精神分裂症(面向对象编程)
基因
特质
小桶
生物
遗传学
心理学
基因表达
精神科
基因本体论
计算机科学
程序设计语言
作者
Yatang Chen,Lei Yu,Yilin Liu,Qing Long,Xu You,Jianping Liu,Yong Zeng
标识
DOI:10.1097/ypg.0000000000000322
摘要
Sex can influence almost all aspects of schizophrenia. However, the molecular mechanisms underlying sex differences in schizophrenia remain poorly understood. In this project, the dataset GSE107638 containing neuronal RNA-seq data and age/sex information of individuals with or without schizophrenia were retrieved. Schizophrenia samples were divided into young male (M-1), young female (F-1), middle-aged and elderly male (M-2) and middle-aged and elderly female (F-2) groups. Next, green/yellow/turquoise modules related to the M-2 trait and turquoise module correlated with the F-2 trait were identified by weighted correlation network analysis (WGCNA) analysis (soft thresholding power: 13; min module size: 200). Crucial genes in the M-2 green, M-2 turquoise and F-2 turquoise modules were identified by WGCNA, gene significance/module membership, and protein–protein interaction (PPI) analysis. Moreover, 2067 and 934 differentially expressed genes (|log2 fold-change| ≥0.58 and P-value < 0.05) in M-2 and F-2 schizophrenia subgroups versus same-age and same-sex counterparts were identified, respectively. Additionally, 82 core genes in the M-2 turquoise module and 4 hub genes in the F-2 turquoise module were differentially expressed in M-2 and F-2 schizophrenia subgroups versus their counterparts, respectively. Among the 82 hub genes, 15 genes were found to be correlated with neuronal development by the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Also, 2 potential PPI networks related to neuronal development were identified. Taken together, multiple potential hub genes and 2 potential neurobiological networks related to schizophrenia sex differences and disease progression were identified among middle-aged and elderly schizophrenia populations.
科研通智能强力驱动
Strongly Powered by AbleSci AI