Equitable anesthesiologist scheduling under demand uncertainty using multiobjective programming

工作量 计算机科学 时间范围 调度(生产过程) 预算约束 数学优化 衡平法 地铁列车时刻表 作业车间调度 运筹学 目标规划 约束规划 经济 数学 随机规划 政治学 法学 操作系统 新古典经济学
作者
Kai Sun,Minghe Sun,Deepak Agrawal,Ronald W. Dravenstott,Frank Rosinia,Arkajyoti Roy
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (11): 3699-3716 被引量:9
标识
DOI:10.1111/poms.14058
摘要

This work addresses the practical anesthesiologist scheduling (AS) problem motivated by the needs of an academic anesthesiology department. The AS problem requires the department to plan and deploy providers to adequately meet clinical demand and institutional protocols of various clinical units over a planning horizon of up to several weeks. A data‐driven two‐step AS framework is developed by exploiting the historical demand data of anesthesia cases. The first step is a shift design which obtains the optimal shifts considering clinical demand under uncertainty using conditional value‐at‐risk constraints, and the second step is provider assignments that generate the schedule considering optimal and equitable workload distribution and provider availability using multiobjective mixed‐integer programming models. Moreover, the AS framework incorporates the provider specialties, and clinical and lifestyle preferences and aligns with the existing scheduling practices. An ɛ‐constraint solution method is applied for multiobjective optimization, and an iterative solution method is developed to improve solution quality for workload equity in clinical applications. Computational experiments are performed to evaluate the performance of three alternative forms of the workload equity objective function, and the results show that the minimization of the sum of the absolute deviations of provider workloads best balances solution runtime and quality. In the concerned academic anesthesiology department, two clinical problems, the budget and hiring planning and the monthly scheduling, are addressed via the application of the proposed AS framework. For budget and hiring, decision‐makers can make trade‐offs based on their preference using the nondominated frontiers obtained via the ɛ‐constraint method. For monthly scheduling, the iterative solution method can accommodate preassigned shifts capturing institutional requirements while improving workload equity. The workload variance has been substantially reduced from 2.92 to 1.39 after the implementation based on the historical schedule data. The provider schedule satisfaction is improved from 3.13/5 to 3.44/5, and at least 82% of scheduling burden on department leaders is relieved. The developed AS framework is generic and can be extended to the scheduling of other types of care providers, including nurses and residents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茉莉发布了新的文献求助10
1秒前
望十五月发布了新的文献求助10
1秒前
慢漫发布了新的文献求助10
1秒前
2秒前
qiukui完成签到,获得积分10
2秒前
西西发布了新的文献求助10
2秒前
求知发布了新的文献求助10
4秒前
6秒前
可爱的函函应助zbzfp采纳,获得10
6秒前
乐观秋荷完成签到,获得积分10
9秒前
9秒前
Ava应助高高的平安采纳,获得10
10秒前
张永媚完成签到,获得积分10
10秒前
JamesPei应助四十采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
悲伤的小卷毛完成签到,获得积分10
13秒前
笨小孩发布了新的文献求助10
13秒前
Jasper应助木子采纳,获得10
13秒前
maitiandehe完成签到,获得积分10
13秒前
15秒前
明亮元柏发布了新的文献求助10
17秒前
西西完成签到 ,获得积分10
18秒前
希望天下0贩的0应助西西采纳,获得10
18秒前
充电宝应助脱碳甲醇采纳,获得10
19秒前
脑洞疼应助笨小孩采纳,获得10
19秒前
lmr发布了新的文献求助20
19秒前
20秒前
fann完成签到,获得积分10
21秒前
haoooooooooooooo应助南玖采纳,获得10
22秒前
23秒前
魔幻蓉完成签到 ,获得积分10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
自由忆枫应助255采纳,获得30
23秒前
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
24秒前
浮游应助科研通管家采纳,获得10
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5696091
求助须知:如何正确求助?哪些是违规求助? 5105380
关于积分的说明 15218112
捐赠科研通 4852172
什么是DOI,文献DOI怎么找? 2602992
邀请新用户注册赠送积分活动 1554614
关于科研通互助平台的介绍 1512681