TB-MFCC multifuse feature for emergency vehicle sound classification using multistacked CNN – Attention BiLSTM

过度拟合 Mel倒谱 计算机科学 卷积神经网络 特征提取 模式识别(心理学) 特征(语言学) 人工智能 语音识别 均方误差 人工神经网络 音频信号 噪音(视频) 数学 统计 哲学 语音编码 图像(数学) 语言学
作者
T. M. Nithya,P. Dhivya,S. N. Sangeethaa,P. Rajesh Kanna
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105688-105688 被引量:6
标识
DOI:10.1016/j.bspc.2023.105688
摘要

Vehicles equipped for emergencies like ambulances, fire engines, and police cruisers play a vital role in society by responding quickly to emergencies and helping to prevent loss of life and maintain order. Vehicle sound identification and classification are very important in the cities to identify emergency vehicles easily and to clear the traffic effectively. Convolutional Neural Network plays an important role in the accurate prediction of vehicles during an emergency. The main motive of this paper is to develop a suitable model and algorithms for data augmentation, feature extraction, and classification. The proposed TB-MFCC multifuse feature is comprised of data augmentation and feature extraction. First, in the proposed signal augmentation, each audio signal uses noise injection, stretching, shifting, and pitching separately and this process increases the number of instances in the dataset. The proposed augmentation reduces the overfitting problem in the network. Second, Triangular Bluestein Mel Frequency Cepstral Coefficients (TB-MFCC) are proposed and fused with Zero Crossing Rate (ZCR), Mel-frequency cepstral coefficients (MFCC), Root Mean Square (RMS), Chroma, and Tempogram to extract the exact feature which increases the accuracy and reduces the Mean Squared Error (MSE) of the model during classification. Finally, the proposed Multi-stacked Convolutional Neural Network (MCNN) with Attention-based Bidirectional Long Short Term Memory (A-BiLSTM) improves the nonlinear relationship among the features. The proposed Pooled Multifuse Feature Augmentation (PMFA) with MCNN & A-BiLSTM increases the accuracy (98.66 %), reduces the False Positive Rate (FPR) by 1.01 %, and loss (0 %). Thus the model predicts the sound without overfitting, underfitting, and vanishing gradient problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助cheng采纳,获得10
2秒前
千葉发布了新的文献求助10
2秒前
知识付费完成签到,获得积分10
3秒前
高高菠萝完成签到 ,获得积分10
3秒前
上官若男应助俭朴的一曲采纳,获得10
4秒前
4秒前
小小完成签到 ,获得积分10
7秒前
晨雾锁阳发布了新的文献求助10
8秒前
cc发布了新的文献求助10
9秒前
lingzhi完成签到 ,获得积分10
9秒前
Genius完成签到,获得积分10
11秒前
科研通AI5应助111采纳,获得10
14秒前
14秒前
15秒前
lio完成签到,获得积分10
16秒前
Chen完成签到,获得积分10
16秒前
沉默夏真发布了新的文献求助30
17秒前
容荣发布了新的文献求助10
18秒前
power完成签到,获得积分10
18秒前
21秒前
edsenone发布了新的文献求助10
22秒前
sunshine应助容荣采纳,获得10
23秒前
24秒前
研友_VZG7GZ应助李kyt采纳,获得10
24秒前
25秒前
老虎完成签到,获得积分10
25秒前
25秒前
昏睡的芾完成签到,获得积分20
26秒前
勤奋的如松完成签到,获得积分10
26秒前
安茉完成签到,获得积分10
26秒前
温暖的涵易完成签到,获得积分0
26秒前
南卡发布了新的文献求助10
27秒前
27秒前
邓大发啦啦啦完成签到,获得积分10
29秒前
fz1完成签到 ,获得积分10
29秒前
轻松的芯完成签到 ,获得积分10
30秒前
30秒前
gxmu6322发布了新的文献求助10
30秒前
Xinxxx发布了新的文献求助10
30秒前
科目三应助飞快的珩采纳,获得10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435