亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning in Ultrasound Localization Microscopy: Applications and Perspectives

深度学习 微气泡 人工智能 计算机科学 稳健性(进化) 超声波 可视化 超分辨率 模式识别(心理学) 图像(数学) 医学 放射科 生物 生物化学 基因
作者
Brice Rauby,Paul Xing,Maxime Gasse,Jean Provost
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:71 (12: Breaking the Resolution): 1765-1784 被引量:8
标识
DOI:10.1109/tuffc.2024.3462299
摘要

Ultrasound localization microscopy (ULM) is a novel super-resolution imaging technique that can image the vasculature in vivo at depth with resolution far beyond the conventional limit of diffraction. By relying on the localization and tracking of clinically approved microbubbles injected in the blood stream, ULM can provide not only anatomical visualization but also hemodynamic quantification of the microvasculature. Several deep learning approaches have been proposed to address challenges in ULM including denoising, improving microbubble localization, estimating blood flow velocity, or performing aberration correction. Proposed deep learning methods often outperform their conventional counterparts by improving image quality and reducing processing time. In addition, their robustness to high concentrations of microbubbles can lead to reduced acquisition times in ULM, addressing a major hindrance to ULM clinical application. Herein, we propose a comprehensive review of the diversity of deep learning applications in ULM focusing on approaches assuming a sparse microbubble distribution. We first provide an overview of how existing studies vary in the constitution of their datasets or in the tasks targeted by the deep learning model. We also take a deeper look into the numerous approaches that have been proposed to improve the localization of microbubbles since they differ highly in their formulation of the optimization problem, their evaluation, or their network architectures. We finally discuss the current limitations and challenges of these methods, as well as the promises and potential of deep learning for ULM in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助新威宝贝采纳,获得10
7秒前
凉面完成签到 ,获得积分10
18秒前
37秒前
39秒前
开放夏旋发布了新的文献求助10
46秒前
StayGolDay完成签到,获得积分10
46秒前
Chouvikin完成签到,获得积分10
1分钟前
XC完成签到,获得积分10
1分钟前
Ava应助YumiPg采纳,获得10
1分钟前
勤恳依霜发布了新的文献求助10
1分钟前
zmx完成签到 ,获得积分10
1分钟前
1分钟前
YumiPg完成签到,获得积分10
1分钟前
YumiPg发布了新的文献求助10
1分钟前
2分钟前
胖小羊完成签到 ,获得积分10
2分钟前
anne发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助50
2分钟前
2分钟前
友好的隶完成签到 ,获得积分10
2分钟前
tyh发布了新的文献求助10
2分钟前
orixero应助anne采纳,获得10
2分钟前
QCB完成签到 ,获得积分10
2分钟前
大模型应助tyh采纳,获得10
2分钟前
123sss完成签到 ,获得积分10
2分钟前
3分钟前
Bellona发布了新的文献求助10
3分钟前
,。完成签到,获得积分10
3分钟前
bkagyin应助Bellona采纳,获得10
3分钟前
所所应助科研通管家采纳,获得30
3分钟前
平淡萍发布了新的文献求助10
3分钟前
3分钟前
kuoping完成签到,获得积分0
4分钟前
平淡萍完成签到,获得积分20
4分钟前
一盏壶完成签到,获得积分10
4分钟前
5分钟前
领导范儿应助开放夏旋采纳,获得10
5分钟前
平淡萍发布了新的文献求助10
5分钟前
6分钟前
6分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148922
求助须知:如何正确求助?哪些是违规求助? 4345136
关于积分的说明 13530180
捐赠科研通 4187368
什么是DOI,文献DOI怎么找? 2296194
邀请新用户注册赠送积分活动 1296608
关于科研通互助平台的介绍 1240577