Improving Transferability of Adversarial Samples via Critical Region-Oriented Feature-Level Attack

计算机科学 对抗制 卷积神经网络 人工智能 可转让性 加权 标杆管理 特征(语言学) 模式识别(心理学) 机器学习 数据挖掘 放射科 哲学 罗伊特 业务 营销 医学 语言学
作者
LI Zhi-wei,Min Ren,Qi Li,Fangling Jiang,Zhenan Sun
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 6650-6664
标识
DOI:10.1109/tifs.2024.3404857
摘要

Deep neural networks (DNNs) have received a lot of attention because of their impressive progress in computer vision. However, it has been recently shown that DNNs are vulnerable to being spoofed by carefully crafted adversarial samples. These samples are generated by specific attack algorithms that can obfuscate the target model without being detected by humans. Recently, feature-level attacks have been the focus of research due to their high transferability. Existing state-of-the-art feature-level attacks all improve the transferability by greedily changing the attention of the model. However, for images that contain multiple target class objects, the attention of different models may differ significantly. Thus greedily changing attention may cause the adversarial samples corresponding to these images to fall into the local optimum of the surrogate model. Furthermore, due to the great structural differences between vision transformers (ViTs) and convolutional neural networks (CNNs), adversarial samples generated on CNNs with feature-level attacks are more difficult to successfully attack ViTs. To overcome these drawbacks, we perform the Critical Region-oriented Feature-level Attack (CRFA) in this paper. Specifically, we first propose the Perturbation Attention-aware Weighting (PAW), which destroys critical regions of the image by performing feature-level attention weighting on the adversarial perturbations without changing the model attention as much as possible. Then we propose the Region ViT-critical Retrieval (RVR), which enables the generator to accommodate the transferability of adversarial samples on ViTs by adding extra prior knowledge of ViTs to the decoder. Extensive experiments demonstrate significant performance improvements achieved by our approach, i.e., improving the fooling rate by 19.9% against CNNs and 25.0% against ViTs as compared to state-of-the-art feature-level attack method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩虹捕手发布了新的文献求助10
1秒前
BowieHuang应助谦让的小姜采纳,获得10
2秒前
verymiao完成签到 ,获得积分10
2秒前
丘比特应助YY采纳,获得10
2秒前
丘比特应助929采纳,获得30
2秒前
Red-Rain发布了新的文献求助10
3秒前
来来完成签到,获得积分10
4秒前
谁煮花生完成签到,获得积分10
4秒前
4秒前
香菜完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
刘子怡发布了新的文献求助10
5秒前
wwwwwcy发布了新的文献求助10
5秒前
5秒前
月亮完成签到,获得积分10
6秒前
华仔应助乐观的小猫咪采纳,获得10
6秒前
斯文败类应助蓝天采纳,获得10
6秒前
xiaojinzi完成签到,获得积分10
7秒前
mooncake187完成签到,获得积分10
8秒前
科研通AI6应助queer采纳,获得10
8秒前
斯文败类应助害羞的宛亦采纳,获得10
9秒前
9秒前
蓝天碧海小西服完成签到,获得积分0
9秒前
龙腾虎跃发布了新的文献求助10
9秒前
法郎发布了新的文献求助10
9秒前
科研通AI2S应助谦让的小姜采纳,获得10
9秒前
shhoing应助秋天采纳,获得10
10秒前
月亮发布了新的文献求助10
11秒前
xuan完成签到,获得积分10
11秒前
浮游应助谁煮花生采纳,获得10
11秒前
11秒前
11秒前
小马甲应助Lin采纳,获得10
11秒前
12秒前
13秒前
香蕉觅云应助王大锤采纳,获得10
14秒前
越红完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536258
求助须知:如何正确求助?哪些是违规求助? 4623988
关于积分的说明 14590229
捐赠科研通 4564430
什么是DOI,文献DOI怎么找? 2501723
邀请新用户注册赠送积分活动 1480520
关于科研通互助平台的介绍 1451794