普鲁士蓝
材料科学
双金属片
碳纳米管
阴极
纳米技术
离子
拉伤
碳纤维
化学工程
电化学
电极
复合材料
物理化学
复合数
有机化学
冶金
金属
医学
化学
工程类
内科学
作者
Zhuo Chen,P. W. Zhao,Huibin Liu,Qianqiao Wang,Shiyuan Fan,Bin Chen,Yuan Chen,Wenchao Peng,Yang Li,Qicheng Zhang,Xiaobin Fan
标识
DOI:10.1002/adfm.202512770
摘要
Abstract Prussian blue analogs (PBAs) are promising sodium‐ion battery (SIBs) cathodes but face practical limitations, including low crystallinity, lattice strain accumulation, and sluggish ion/electron transport. These challenges are overcome through an in situ bimetallic (FeNi)‐encapsulated N‐doped carbon nanotube (FeNi@NCT) precursor strategy to synthesize FeNiPBA/NCT. This approach achieves synergistic “crystallinity‐strain‐transport” optimization: 1) Controlled Fe 2+ /Ni 2+ leaching from precursors promotes high crystallinity; 2) Ni doping weakens framework–Na + interactions and mitigates lattice strain during solid‐solution cycling; 3) An interconnected N‐doped carbon nanotube (NCT) network enhances charge transfer kinetics. Consequently, FeNiPBA/NCT delivers superior rate performance and remarkable cycling stability (83.5% capacity retention after 2000 cycles at 1.0 A g −1 ), demonstrating a scalable paradigm for high‐performance SIB cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI