Energy or Accuracy? Near-Optimal User Selection and Aggregator Placement for Federated Learning in MEC

计算机科学 上传 新闻聚合器 后悔 能源消耗 机器学习 能量(信号处理) 人工智能 选择算法 近似算法 选择(遗传算法) 算法 统计 操作系统 生物 数学 生态学
作者
Zichuan Xu,Dongrui Li,Weifa Liang,Wenzheng Xu,Qiufen Xia,Pan Zhou,Omer Rana,Hao Li
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (3): 2470-2485 被引量:7
标识
DOI:10.1109/tmc.2023.3262829
摘要

To unveil the hidden value in the datasets of user equipments (UEs) while preserving user privacy, federated learning (FL) is emerging as a promising technique to train a machine learning model using the datasets of UEs locally without uploading the datasets to a central location. Customers require to train machine learning models based on different datasets of UEs, through issuing FL requests that are implemented by FL services in a mobile edge computing (MEC) network. A key challenge of enabling FL in MEC networks is how to minimize the energy consumption of implementing FL requests while guaranteeing the accuracy of machine learning models, given that the availabilities of UEs usually are uncertain. In this paper, we investigate the problem of energy minimization for FL in an MEC network with uncertain availabilities of UEs. We first consider the energy minimization problem for a single FL request in an MEC network. We then propose a novel optimization framework for the problem with a single FL request, which consists of (1) an online learning algorithm with a bounded regret for the UE selection, by considering various contexts (side information) that influence energy consumption; and (2) an approximation algorithm with an approximation ratio for the aggregator placement for a single FL request. We thirdly deal with the problem with multiple FL requests, for which we devise an online learning algorithm with a bounded regret. We finally evaluate the performance of the proposed algorithms by extensive experiments. Experimental results show that the proposed algorithms outperform their counterparts by reducing at least 13% of the total energy consumption while achieving the same accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向的博发布了新的文献求助10
刚刚
刚刚
朴实安珊完成签到,获得积分10
1秒前
Jjj完成签到,获得积分10
1秒前
乐乐应助淡然的大碗采纳,获得10
1秒前
2秒前
cl发布了新的文献求助30
6秒前
小胖发布了新的文献求助10
6秒前
善学以致用应助优美访文采纳,获得10
9秒前
dzh完成签到,获得积分10
10秒前
小杨完成签到 ,获得积分10
10秒前
chen完成签到 ,获得积分10
13秒前
13秒前
16秒前
江风海韵完成签到,获得积分10
16秒前
16秒前
17秒前
淡定翠桃完成签到,获得积分10
18秒前
独特的高山完成签到,获得积分10
19秒前
19秒前
星辰大海应助京阿尼采纳,获得10
20秒前
liangtaotao发布了新的文献求助10
21秒前
22秒前
one发布了新的文献求助10
22秒前
shan发布了新的文献求助10
23秒前
捡破烂的完成签到 ,获得积分10
25秒前
26秒前
可爱的函函应助杨冠文采纳,获得10
27秒前
eagle发布了新的文献求助10
27秒前
科研通AI2S应助Hellodude采纳,获得10
30秒前
miku831完成签到,获得积分10
31秒前
31秒前
活泼的阁完成签到,获得积分10
31秒前
xsy完成签到 ,获得积分10
31秒前
所所应助liangtaotao采纳,获得10
34秒前
巨炮叔叔完成签到,获得积分10
34秒前
34秒前
lw完成签到,获得积分10
34秒前
Lucas应助ZYG采纳,获得30
35秒前
9527完成签到,获得积分20
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846823
求助须知:如何正确求助?哪些是违规求助? 3389336
关于积分的说明 10556828
捐赠科研通 3109741
什么是DOI,文献DOI怎么找? 1713870
邀请新用户注册赠送积分活动 825023
科研通“疑难数据库(出版商)”最低求助积分说明 775164