Bearing Fault Diagnosis Based on Multi-task Learning

计算机科学 人工智能 方位(导航) 断层(地质) 深度学习 模式识别(心理学) 特征提取 机器学习 故障检测与隔离 卷积神经网络 人工神经网络 任务(项目管理)
作者
Wentao Mao,Jianliang He,Wushi Feng,Siyu Tian
出处
期刊:Prognostics and System Health Management Conference 被引量:2
标识
DOI:10.1109/phm-chongqing.2018.00067
摘要

In recent years, machine learning techniques have been successfully applied to analyzing vibration signal in bearing fault diagnosis problems. However, the bottleneck to improve the diagnosis performance is the lack of valid domain knowledge about bearing fault in the classification or regression model, especially when the collected fault data is insufficient. Moreover, inadequate fault information will result in unstable diagnosis result. To solve this problem, a new bearing fault diagnosis method based on multi-task learning is proposed in this paper. The intuitive point is the bearing fault with similar crack size and loads can provide useful domain information for each other. By considering the diagnosis model on one bearing as a task, this method uses marginal spectrum by Hilbert-Huang Transform as features, and constructs multi-task learning model on multiple related diagnosis tasks with different fault types to improve their diagnosis performance simultaneously. Compared to the single diagnosis task, the proposed method shares the domain information between various fault types and then builds a more efficient diagnosis model. Experimental results on CWRU bearing data set show that, compared with some traditional machine learning-based diagnosis methods, the proposed method can effectively improve the diagnosis accuracy and robustness under different working conditions and it's especially suitable for dealing with lots of tasks with insufficient data. Even with insufficient features, the proposed method gets the accuracy from 77.50% to 94.17%, which indicates the multi-task diagnosis can get help from related bearing fault information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助风趣夜云采纳,获得10
刚刚
fengwx发布了新的文献求助10
1秒前
1秒前
上官若男应助嘚嘚采纳,获得10
1秒前
2秒前
妮妮发布了新的文献求助10
2秒前
Syn完成签到,获得积分20
2秒前
彭于晏应助amy采纳,获得10
3秒前
伶俐初兰发布了新的文献求助10
3秒前
raoxray发布了新的文献求助10
3秒前
仙笛童神发布了新的文献求助10
4秒前
vivi发布了新的文献求助10
4秒前
zxy发布了新的文献求助10
7秒前
Syn发布了新的文献求助10
7秒前
卷心菜发布了新的文献求助10
7秒前
苏打发布了新的文献求助10
8秒前
仙笛童神完成签到,获得积分10
8秒前
9秒前
完美世界应助甜蜜乐松采纳,获得10
11秒前
专注的皮皮虾完成签到 ,获得积分10
12秒前
bless完成签到 ,获得积分10
12秒前
乐乐应助漂亮的大神采纳,获得10
14秒前
14秒前
cyw发布了新的文献求助10
14秒前
所所应助超级的诗兰采纳,获得10
15秒前
天天快乐应助寒染雾采纳,获得10
15秒前
15秒前
典雅诗筠完成签到 ,获得积分10
16秒前
Altman完成签到 ,获得积分10
16秒前
16秒前
小马甲应助伶俐初兰采纳,获得10
17秒前
鸣笛应助raoxray采纳,获得30
17秒前
19秒前
非鱼鱼子发布了新的文献求助10
19秒前
吴学仕发布了新的文献求助10
19秒前
20秒前
儒雅HR发布了新的文献求助10
21秒前
司空豁发布了新的文献求助30
21秒前
徐国发发布了新的文献求助10
21秒前
22秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
basics of anesthesia, 7th edition 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915811
求助须知:如何正确求助?哪些是违规求助? 3461425
关于积分的说明 10916731
捐赠科研通 3188241
什么是DOI,文献DOI怎么找? 1762507
邀请新用户注册赠送积分活动 852893
科研通“疑难数据库(出版商)”最低求助积分说明 793603