Surface defect classification of steels with a new semi-supervised learning method

Softmax函数 自编码 人工智能 计算机科学 分类器(UML) 深度学习 模式识别(心理学) MNIST数据库 监督学习 提取器 机器学习 人工神经网络 工程类 工艺工程
作者
He Di,Ke Xu,Peng Zhou,Dongdong Zhou
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:117: 40-48 被引量:225
标识
DOI:10.1016/j.optlaseng.2019.01.011
摘要

Abstract Defect inspection is extremely crucial to ensure the quality of steel surface. It affects not only the subsequent production, but also the quality of the end-products. However, due to the rare occurrence and appearance variations of defects, surface defect identification of steels has always been a challenging task. Recently, deep learning methods have shown outstanding performance in image classification, especially when there are enough training samples. Since most sample images of steel surface are unlabeled, a new semi-supervised learning method is proposed to classify surface defects of steels. The new method is named CAE-SGAN, as it is based on Convolutional Autoencoder (CAE) and semi-supervised Generative Adversarial Networks (SGAN). CAE-SGAN first trains a stacked CAE through massive unlabeled data. Considering the appearance variations of defects, the passthrough layer is used to help CAE extract fine-grained features. After CAE is trained, the encoder network of CAE is reserved as the feature extractor and fed into a softmax layer to form a new classifier. SGAN is introduced for semi-supervised learning to further improve the generalization ability of the new method. The classifier is trained with images collected from real production lines and images randomly generated by SGAN. Extensive experiments are carried out with samples captured from different steel production lines, and the results indicate that CAE-SGAN had yielded best performances compared with traditional methods. Especially for hot rolled plates, the classification rate is improved by around 16%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
evilbatuu完成签到,获得积分10
刚刚
1秒前
1秒前
可爱的函函应助123采纳,获得10
1秒前
2秒前
欣喜雅阳完成签到,获得积分10
2秒前
wanci应助Li采纳,获得10
2秒前
2秒前
久久完成签到 ,获得积分10
3秒前
5秒前
迷路寄容完成签到,获得积分10
5秒前
ChenYX发布了新的文献求助20
6秒前
6秒前
6秒前
烂漫时发布了新的文献求助30
7秒前
龙仔子发布了新的文献求助10
7秒前
8秒前
8秒前
小新应助QZZ采纳,获得10
8秒前
ric完成签到 ,获得积分10
8秒前
江树远完成签到 ,获得积分10
8秒前
高不二发布了新的文献求助10
8秒前
老北京完成签到,获得积分10
9秒前
9秒前
DBX完成签到,获得积分20
9秒前
9秒前
yang给yang的求助进行了留言
9秒前
9秒前
10秒前
10秒前
11秒前
11秒前
12秒前
鱼鱼鱼KYSL发布了新的文献求助10
12秒前
13秒前
zybbb发布了新的文献求助10
13秒前
Jasper应助热情的远锋采纳,获得10
13秒前
zhj发布了新的文献求助10
13秒前
13秒前
2mo完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321009
求助须知:如何正确求助?哪些是违规求助? 4462817
关于积分的说明 13887818
捐赠科研通 4353840
什么是DOI,文献DOI怎么找? 2391357
邀请新用户注册赠送积分活动 1385054
关于科研通互助平台的介绍 1354808