Development and Validation of Noninvasive MRI‐Based Signature for Preoperative Prediction of Early Recurrence in Perihilar Cholangiocarcinoma

医学 列线图 四分位间距 单变量 放射科 逻辑回归 单变量分析 麦克内马尔试验 精确检验 多元分析 曼惠特尼U检验 阶段(地层学) 多元统计 接收机工作特性 逐步回归 Lasso(编程语言) 内科学 计算机科学 统计 万维网 古生物学 数学 生物
作者
Jian Zhao,Wei Zhang,Yuan‐Yi Zhu,Hao‐Yu Zheng,Li Xu,Jun Zhang,Si‐Yun Liu,Fu‐Yu Li,Bin Song
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:55 (3): 787-802 被引量:23
标识
DOI:10.1002/jmri.27846
摘要

Background Cholangiocarcinoma is a type of hepatobiliary tumor. For perihilar cholangiocarcinoma (pCCA), patients who experience early recurrence (ER) have a poor prognosis. Preoperative accurate prediction of postoperative ER can avoid unnecessary operation; however, prediction is challenging. Purpose To develop a novel signature based on clinical and/or MRI radiomics features of pCCA to preoperatively predict ER. Study Type Retrospective. Population One hundred eighty‐four patients (median age, 61.0 years; interquartile range: 53.0–66.8 years) including 115 men and 69 women. Field Strength/Sequence A 1.5 T; volumetric interpolated breath‐hold examination ( VIBE ) sequence. Assessment The models were developed from the training set (128 patients) and validated in a separate testing set (56 patients). The contrast‐enhanced arterial and portal vein phase MR images of hepatobiliary system were used for extracting radiomics features. The correlation analysis, least absolute shrinkage and selection operator (LASSO) logistic regression (LR), backward stepwise LR were mainly used for radiomics feature selection and modeling (Model radiomic ). The univariate and multivariate backward stepwise LR were used for preoperative clinical predictors selection and modeling (Model clinic ). The radiomics and preoperative clinical predictors were combined by multivariate LR method to construct clinic‐radiomics nomogram (Model combine ). Statistical Tests Chi‐squared ( χ 2 ) test or Fisher's exact test, Mann–Whitney U ‐test or t ‐test, Delong test. Two tailed P < 0.05 was considered statistically significant. Results Based on the comparison of area under the curves (AUC) using Delong test, Model clinic and Model combine had significantly better performance than Model radiomic and tumor‐node‐metastasis (TNM) system in training set. In the testing set, both Model clinic and Model combine had significantly better performance than TNM system, whereas only Model combine was significantly superior to Model radiomic . However, the AUC values were not significantly different between Model clinic and Model combine ( P = 0.156 for training set and P = 0.439 for testing set). Data Conclusion A noninvasive model combining the MRI‐based radiomics signature and clinical variables is potential to preoperatively predict ER for pCCA. Level of Evidence 3 Technical Efficacy Stage 4
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
丘比特应助逾越采纳,获得10
2秒前
DR发布了新的文献求助30
4秒前
zhumeimei发布了新的文献求助10
4秒前
4秒前
5秒前
zsj完成签到,获得积分10
6秒前
wjc完成签到 ,获得积分10
6秒前
眭超阳完成签到 ,获得积分10
6秒前
清栀关注了科研通微信公众号
7秒前
7秒前
melo发布了新的文献求助10
7秒前
一二完成签到,获得积分10
8秒前
即兴发布了新的文献求助100
8秒前
爆米花应助跳跃的太君采纳,获得10
8秒前
8秒前
快记晓霜应助大力怀亦采纳,获得10
9秒前
10秒前
堆堆发布了新的文献求助10
11秒前
wanna发布了新的文献求助10
12秒前
wuhu发布了新的文献求助10
12秒前
阳光的盼烟完成签到,获得积分10
12秒前
12秒前
未央完成签到,获得积分10
13秒前
科研通AI6应助张凤采纳,获得10
13秒前
13秒前
能干雁凡发布了新的文献求助10
13秒前
逾越完成签到,获得积分10
14秒前
快乐花卷完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
Kate完成签到,获得积分10
16秒前
16秒前
隐形曼青应助跳跃的太君采纳,获得10
16秒前
16秒前
虚心岂愈完成签到,获得积分10
17秒前
苹果丑发布了新的文献求助10
17秒前
ZZ完成签到,获得积分10
17秒前
高分求助中
美国药典 2000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5239316
求助须知:如何正确求助?哪些是违规求助? 4406741
关于积分的说明 13715300
捐赠科研通 4275149
什么是DOI,文献DOI怎么找? 2345932
邀请新用户注册赠送积分活动 1343067
关于科研通互助平台的介绍 1301010