Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features

人工智能 指纹(计算) 计算机科学 细节 模式识别(心理学) 计算机视觉 特征(语言学) 匹配(统计) 指纹识别 像素 山脊 特征提取 数学 地理 语言学 哲学 统计 地图学
作者
Anil K. Jain,Yi Chen,Meltem Demirkus
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:29 (1): 15-27 被引量:301
标识
DOI:10.1109/tpami.2007.250596
摘要

Fingerprint friction ridge details are generally described in a hierarchical order at three different levels, namely, level 1 (pattern), level 2 (minutia points), and level 3 (pores and ridge contours). Although latent print examiners frequently take advantage of level 3 features to assist in identification, automated fingerprint identification systems (AFIS) currently rely only on level 1 and level 2 features. In fact, the Federal Bureau of Investigation's (FBI) standard of fingerprint resolution for AFIS is 500 pixels per inch (ppi), which is inadequate for capturing level 3 features, such as pores. With the advances in fingerprint sensing technology, many sensors are now equipped with dual resolution (500 ppi/1,000 ppi) scanning capability. However, increasing the scan resolution alone does not necessarily provide any performance improvement in fingerprint matching, unless an extended feature set is utilized. As a result, a systematic study to determine how much performance gain one can achieve by introducing level 3 features in AFIS is highly desired. We propose a hierarchical matching system that utilizes features at all the three levels extracted from 1,000 ppi fingerprint scans. Level 3 features, including pores and ridge contours, are automatically extracted using Gabor filters and wavelet transform and are locally matched using the iterative closest point (ICP) algorithm. Our experiments show that level 3 features carry significant discriminatory information. There is a relative reduction of 20 percent in the equal error rate (EER) of the matching system when level 3 features are employed in combination with level 1 and 2 features. This significant performance gain is consistently observed across various quality fingerprint images
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助问凝采纳,获得10
刚刚
重要的天空完成签到,获得积分10
1秒前
ren发布了新的文献求助10
1秒前
斯文败类应助天才采纳,获得10
1秒前
小蘑菇应助勤劳绿柳采纳,获得10
1秒前
黑马王子发布了新的文献求助10
4秒前
姜露萍发布了新的文献求助10
4秒前
天天快乐应助科研小蔡采纳,获得10
4秒前
sunstar发布了新的文献求助10
4秒前
5秒前
问凝完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
科研糊涂神完成签到,获得积分10
6秒前
cc完成签到 ,获得积分10
6秒前
9秒前
10秒前
天天快乐应助yating采纳,获得10
10秒前
小蘑菇应助莘莘采纳,获得10
11秒前
12秒前
qqaeao完成签到,获得积分10
13秒前
13秒前
14秒前
16秒前
xss发布了新的文献求助10
16秒前
小于完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
陈大浩浩发布了新的文献求助10
17秒前
17秒前
xiao发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
WQY发布了新的文献求助10
19秒前
小马甲应助hzg采纳,获得10
19秒前
19秒前
hamster完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526879
求助须知:如何正确求助?哪些是违规求助? 4616832
关于积分的说明 14556118
捐赠科研通 4555346
什么是DOI,文献DOI怎么找? 2496326
邀请新用户注册赠送积分活动 1476628
关于科研通互助平台的介绍 1448142