Multiple Merger Genealogies in Outbreaks of Mycobacterium tuberculosis

溯祖理论 生物 近似贝叶斯计算 人口 进化生物学 爆发 推论 寄主(生物学) 谱系(遗传) 遗传学 系统发育学 人口学 病毒学 基因 人工智能 计算机科学 社会学
作者
Fabrizio Menardo,Sébastien Gagneux,Fabian Freund
出处
期刊:Molecular Biology and Evolution [Oxford University Press]
卷期号:38 (1): 290-306 被引量:24
标识
DOI:10.1093/molbev/msaa179
摘要

Abstract The Kingman coalescent and its developments are often considered among the most important advances in population genetics of the last decades. Demographic inference based on coalescent theory has been used to reconstruct the population dynamics and evolutionary history of several species, including Mycobacterium tuberculosis (MTB), an important human pathogen causing tuberculosis. One key assumption of the Kingman coalescent is that the number of descendants of different individuals does not vary strongly, and violating this assumption could lead to severe biases caused by model misspecification. Individual lineages of MTB are expected to vary strongly in reproductive success because 1) MTB is potentially under constant selection due to the pressure of the host immune system and of antibiotic treatment, 2) MTB undergoes repeated population bottlenecks when it transmits from one host to the next, and 3) some hosts show much higher transmission rates compared with the average (superspreaders). Here, we used an approximate Bayesian computation approach to test whether multiple-merger coalescents (MMC), a class of models that allow for large variation in reproductive success among lineages, are more appropriate models to study MTB populations. We considered 11 publicly available whole-genome sequence data sets sampled from local MTB populations and outbreaks and found that MMC had a better fit compared with the Kingman coalescent for 10 of the 11 data sets. These results indicate that the null model for analyzing MTB outbreaks should be reassessed and that past findings based on the Kingman coalescent need to be revisited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋映菱发布了新的文献求助10
刚刚
科研通AI6.1应助BINBIN采纳,获得10
刚刚
爆米花应助瞿寒采纳,获得10
1秒前
玮玮发布了新的文献求助10
1秒前
斯文败类应助KrisTina采纳,获得10
1秒前
今后应助青栞采纳,获得10
1秒前
李禾和发布了新的文献求助30
1秒前
服部平次完成签到,获得积分10
2秒前
zjh完成签到,获得积分10
3秒前
claire完成签到,获得积分10
3秒前
4秒前
4秒前
Darling完成签到,获得积分10
5秒前
潘骏立完成签到,获得积分10
5秒前
5秒前
独特的绿蝶完成签到,获得积分10
6秒前
6秒前
火星上蜗牛完成签到 ,获得积分10
7秒前
体贴半仙完成签到,获得积分10
7秒前
Redinn完成签到,获得积分10
8秒前
酷波er应助Dodo采纳,获得10
8秒前
wxn完成签到 ,获得积分10
8秒前
zhao完成签到,获得积分10
9秒前
安详苠发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
xfwang完成签到,获得积分10
10秒前
能干水杯发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
wuxiao发布了新的文献求助30
12秒前
脑洞疼应助Vanilla采纳,获得10
12秒前
科研通AI6.1应助玮玮采纳,获得10
13秒前
1313131完成签到,获得积分10
13秒前
14秒前
Tigher发布了新的文献求助10
14秒前
瞿寒发布了新的文献求助10
15秒前
潘骏立发布了新的文献求助10
18秒前
核桃发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5782905
求助须知:如何正确求助?哪些是违规求助? 5673393
关于积分的说明 15459607
捐赠科研通 4912747
什么是DOI,文献DOI怎么找? 2644268
邀请新用户注册赠送积分活动 1591976
关于科研通互助平台的介绍 1546679