Weakly Supervised Deep Learning-Based Optical Coherence Tomography Angiography

人工智能 深度学习 计算机科学 管道(软件) 光学相干层析成像 模态(人机交互) 连贯性(哲学赌博策略) 监督学习 模式识别(心理学) 任务(项目管理) 计算机视觉 机器学习 人工神经网络 放射科 医学 数学 统计 经济 管理 程序设计语言
作者
Zhe Jiang,Zhiyu Huang,Bin Qiu,Xiangxi Meng,Yunfei You,Xi Liu,Mufeng Geng,Gangjun Liu,Chuanqing Zhou,Kun Yang,Andreas Maier,Qiushi Ren,Yanye Lu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (2): 688-698 被引量:31
标识
DOI:10.1109/tmi.2020.3035154
摘要

Optical coherence tomography angiography (OCTA) is a promising imaging modality for microvasculature studies. Deep learning networks have been widely applied in the field of OCTA reconstruction, benefiting from its powerful mapping capability among images. However, these existing deep learning-based methods depend on high-quality labels, which are hard to acquire considering imaging hardware limitations and practical data acquisition conditions. In this article, we proposed an unprecedented weakly supervised deep learning-based pipeline for OCTA reconstruction task, in the absence of high-quality training labels. The proposed pipeline was investigated on an in vivo animal dataset and a human eye dataset by a cross-validation strategy. Compared with supervised learning approaches, the proposed approach demonstrated similar or even better performance in the OCTA reconstruction task. These investigations indicate that the proposed weakly supervised learning strategy is well capable of performing OCTA reconstruction, and has a certain potential towards clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxqd1发布了新的文献求助10
刚刚
领导范儿应助delia采纳,获得10
刚刚
utgu完成签到,获得积分10
1秒前
充电宝应助张某人采纳,获得10
1秒前
yzx完成签到,获得积分10
1秒前
2秒前
yiyi完成签到,获得积分10
2秒前
稳重十三完成签到,获得积分10
2秒前
清和漾完成签到,获得积分10
3秒前
脑洞疼应助zzyh采纳,获得10
4秒前
5秒前
6秒前
SXYYXS完成签到 ,获得积分10
6秒前
7秒前
7秒前
钩子89应助红红采纳,获得20
8秒前
量子星尘发布了新的文献求助10
10秒前
CAOHOU应助元谷雪采纳,获得10
10秒前
11秒前
Dr.完成签到 ,获得积分10
11秒前
sorry发布了新的文献求助10
11秒前
柠檬小贝发布了新的文献求助10
12秒前
13秒前
荔枝凉完成签到,获得积分10
13秒前
15秒前
Owen应助无情的匪采纳,获得10
15秒前
15秒前
MaFY完成签到,获得积分10
16秒前
领导范儿应助东堂采纳,获得10
16秒前
ly完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
18秒前
huoyan2006应助科小白采纳,获得10
18秒前
ly发布了新的文献求助10
19秒前
响铃完成签到,获得积分10
20秒前
黄国琴发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978261
求助须知:如何正确求助?哪些是违规求助? 3522339
关于积分的说明 11212473
捐赠科研通 3259627
什么是DOI,文献DOI怎么找? 1799658
邀请新用户注册赠送积分活动 878497
科研通“疑难数据库(出版商)”最低求助积分说明 806948