OncoLoop: A network-based precision cancer medicine framework

前列腺癌 同源 计算机科学 癌症 精密医学 计算生物学 医学 内科学 生物 病理 语言学 哲学
作者
Alessandro Vasciaveo,Min Zou,Juan Martín Arriaga,Francisca Nunes de Almeida,Eugene F. Douglass,Maho Shibata,Antonio Rodriguez-Calero,Simone de Brot,Antonina Mitrofanova,Chee Wai Chua,Charles Karan,Ron Realubit,Sergey Pampou,Jaime Y. Kim,Eva Corey,Mariano J. Alvarez,Mark A. Rubin,Michael M. Shen,Andrea Califano,Cory Abate‐Shen
标识
DOI:10.1101/2022.02.11.479456
摘要

Abstract At present, prioritizing cancer treatments at the individual patient level remains challenging, and performing co-clinical studies using patient-derived models in real-time is often not feasible. To circumvent these challenges, we introduce OncoLoop, a precision medicine framework to predict and validate drug sensitivity in human tumors and their pre-existing high-fidelity ( cognate ) model(s) by leveraging perturbational profiles of clinically-relevant oncology drugs. As proof-of-concept, we applied OncoLoop to prostate cancer (PCa) using a series of genetically-engineered mouse models (GEMMs) that recapitulate a broad spectrum of disease states, including castration-resistant, metastatic, and neuroendocrine prostate cancer. Interrogation of published cohorts using Master Regulator (MR) conservation analysis revealed that most patients were represented by at least one cognate GEMM-derived tumor (GEMM-DT). Drugs predicted to invert MR activity in patients and their cognate GEMM-DTs were successfully validated, including in two cognate allografts and one cognate patient-derived xenograft (PDX). OncoLoop is a highly generalizable framework that can be extended to other cancers and potentially other diseases. Significance Statement OncoLoop is a transcriptomic-based experimental and computational framework that can support rapid-turnaround co-clinical studies to identify and validate drugs for individual patients, which can then be readily adapted to clinical practice. This framework should be applicable in many cancer contexts for which appropriate models and drug perturbation data are available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自强不息完成签到,获得积分10
刚刚
1秒前
桐桐应助超长反射弧采纳,获得10
1秒前
HeJiangle发布了新的文献求助10
1秒前
脑洞疼应助芯随风静采纳,获得10
1秒前
123完成签到,获得积分10
2秒前
Lucas应助zhengyue2233采纳,获得10
2秒前
orixero应助你吃饱了吗采纳,获得10
3秒前
新手菜鸟发布了新的文献求助10
4秒前
4秒前
4秒前
隐形曼青应助wjx采纳,获得10
4秒前
完美世界应助wjx采纳,获得10
4秒前
田様应助wjx采纳,获得10
4秒前
852应助wjx采纳,获得10
4秒前
在水一方应助wjx采纳,获得10
4秒前
深情安青应助wjx采纳,获得10
4秒前
希望天下0贩的0应助wjx采纳,获得30
4秒前
田様应助wjx采纳,获得10
4秒前
上官若男应助wjx采纳,获得10
4秒前
Lucas应助wjx采纳,获得10
4秒前
张wx_100发布了新的文献求助10
5秒前
七七完成签到,获得积分10
5秒前
椰子味完成签到 ,获得积分20
5秒前
厉飞羽发布了新的文献求助30
5秒前
玛卡巴卡发布了新的文献求助10
5秒前
6秒前
丘比特应助妮妮采纳,获得10
6秒前
Marine完成签到,获得积分10
6秒前
hll完成签到,获得积分10
6秒前
晨曦完成签到,获得积分10
7秒前
爆米花应助lwj007采纳,获得10
7秒前
Hong完成签到,获得积分10
7秒前
华国锋完成签到,获得积分0
7秒前
7秒前
dxs完成签到,获得积分10
8秒前
种花家的兔完成签到,获得积分20
8秒前
TT2022发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261749
求助须知:如何正确求助?哪些是违规求助? 4422906
关于积分的说明 13767729
捐赠科研通 4297318
什么是DOI,文献DOI怎么找? 2357911
邀请新用户注册赠送积分活动 1354280
关于科研通互助平台的介绍 1315383