HyperspectraI Image Classification With Diverse Region Multiscale Feature Extraction and Spectral Imaging

高光谱成像 模式识别(心理学) 计算机科学 人工智能 特征提取 增采样 棱锥(几何) 空间分析 特征(语言学) 图像(数学) 数学 遥感 地理 语言学 哲学 几何学
作者
Xiaolan Xie,Yigang Tang,Bing Tu,Youhua Yu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:15: 5427-5439 被引量:3
标识
DOI:10.1109/jstars.2022.3187972
摘要

We propose a dual-branch multi-region gaussian pyramid based multi-scale feature extraction and spectral feature extraction network. We use the PCA algorithm to reduce the dimensionality of the data before feature extraction, but the degree of data downscaling is different for the two-branch network. For the spatial information of hyperspectral images, we use a multi-region piecewise gaussian pyramid downsampling method to generate multi-scale and multi-resolution image data and use an improved resnet network to extract spatial information, so that the network can extract specific contextual features of hyperspectral images. For the spectral information of hyperspectral images, we use the method of imaging spectral information, first reducing the dimension of the spectral data and then expanding the spectral data into an image of N×N. By expanding into an image, the resnet network is introduced to extract spectral information, but the number of network layers is different from that of the resnet network for obtaining spatial information, which can solve the problem of low correct classification rate due to changes in similar spectral data. Finally, the spatial and spectral features after the dual-branch feature extraction network are combined into a fully connected network for classification, and the fusion of the two features can improve the classification accuracy. Our experiments on three commonly used datasets show that the method can improve the accuracy of the classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助小刘鸭鸭采纳,获得10
刚刚
Galaxy发布了新的文献求助10
刚刚
鹿鹤完成签到,获得积分10
刚刚
1秒前
荒诞DE谎言完成签到 ,获得积分10
1秒前
斯文败类应助zz采纳,获得30
2秒前
海绵君完成签到,获得积分10
2秒前
2秒前
执着时光发布了新的文献求助10
3秒前
Ava应助自信的涛采纳,获得20
3秒前
司徒文青应助冷静灵竹采纳,获得30
3秒前
进击的巨人完成签到 ,获得积分10
4秒前
Shan5完成签到,获得积分10
4秒前
4秒前
天津科技大学完成签到,获得积分20
4秒前
无花果应助钧钧钧采纳,获得10
4秒前
畅快的胡萝卜完成签到,获得积分10
5秒前
涟漪发布了新的文献求助10
5秒前
5秒前
卢孤菱完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
小周小周完成签到,获得积分10
6秒前
huohuo发布了新的文献求助10
6秒前
科研通AI5应助韦雨君采纳,获得20
6秒前
年轻的白梦完成签到,获得积分10
7秒前
ponymjj应助kigyccwh采纳,获得10
7秒前
Akim应助接受所有饼干采纳,获得10
7秒前
hh发布了新的文献求助10
8秒前
江三村完成签到 ,获得积分10
8秒前
刘66完成签到,获得积分10
9秒前
Loki完成签到,获得积分10
9秒前
打打应助MiLi采纳,获得10
9秒前
开放诗柳发布了新的文献求助10
9秒前
欧大大完成签到,获得积分10
9秒前
hyt发布了新的文献求助10
10秒前
10秒前
敏感的楷瑞完成签到,获得积分10
10秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534