多重性(数学)
数学
半经典物理学
拉普拉斯算子
操作员(生物学)
数学分析
功能(生物学)
数学物理
物理
量子力学
进化生物学
量子
转录因子
生物
基因
生物化学
抑制因子
化学
作者
Claudianor O. Alves,Minbo Yang
出处
期刊:Proceedings
[Cambridge University Press]
日期:2015-10-07
卷期号:146 (1): 23-58
被引量:85
标识
DOI:10.1017/s0308210515000311
摘要
We study the multiplicity and concentration behaviour of positive solutions for a quasi-linear Choquard equation where Δ p is the p -Laplacian operator, 1 < p < N , V is a continuous real function on ℝ N , 0 < μ < N , F ( s ) is the primitive function of f ( s ), ε is a positive parameter and * represents the convolution between two functions. The question of the existence of semiclassical solutions for the semilinear case p = 2 has recently been posed by Ambrosetti and Malchiodi. We suppose that the potential satisfies the condition introduced by del Pino and Felmer, i.e. V has a local minimum. We prove the existence, multiplicity and concentration of solutions for the equation by the penalization method and Lyusternik–Schnirelmann theory and even show novel results for the semilinear case p = 2.
科研通智能强力驱动
Strongly Powered by AbleSci AI