数学
四元数
奇异值分解
厄米矩阵
奇异值
因式分解
纯数学
对角矩阵
酉矩阵
一般化
复矩阵
矩阵分解
对角线的
基质(化学分析)
域代数上的
对称矩阵
单一制国家
数学分析
特征向量
算法
几何学
色谱法
化学
复合材料
材料科学
法学
政治学
物理
量子力学
作者
Roger A. Horn,Fuzhen Zhang
标识
DOI:10.1080/03081087.2011.618838
摘要
Abstract A complex symmetric matrix A can always be factored as A = UΣU T , in which U is complex unitary and Σ is a real diagonal matrix whose diagonal entries are the singular values of A. This factorization may be thought of as a special singular value decomposition for complex symmetric matrices. We present an analogous special singular value decomposition for a class of quaternion matrices that includes complex matrices that are symmetric or Hermitian. Keywords: Autonne–Takagi factorizationcomplex symmetric matrixquaternion matrixsingular value decompositioncanonical formsAMS Subject Classifications:: 15A2315A33 Acknowledgements It is a pleasure to acknowledge an insightful comment from Tatiana Klimchuk that helped us improve the formulation of Theorem 3.
科研通智能强力驱动
Strongly Powered by AbleSci AI