Discovering regions of different functions in a city using human mobility and POIs

计算机科学 兴趣点
作者
Jing Yuan,Yu Zheng,Xing Xie
出处
期刊:Knowledge Discovery and Data Mining 卷期号:: 186-194 被引量:742
标识
DOI:10.1145/2339530.2339561
摘要

The development of a city gradually fosters different functional regions, such as educational areas and business districts. In this paper, we propose a framework (titled DRoF) that Discovers Regions of different Functions in a city using both human mobility among regions and points of interests (POIs) located in a region. Specifically, we segment a city into disjointed regions according to major roads, such as highways and urban express ways. We infer the functions of each region using a topic-based inference model, which regards a region as a document, a function as a topic, categories of POIs (e.g., restaurants and shopping malls) as metadata (like authors, affiliations, and key words), and human mobility patterns (when people reach/leave a region and where people come from and leave for) as words. As a result, a region is represented by a distribution of functions, and a function is featured by a distribution of mobility patterns. We further identify the intensity of each function in different locations. The results generated by our framework can benefit a variety of applications, including urban planning, location choosing for a business, and social recommendations. We evaluated our method using large-scale and real-world datasets, consisting of two POI datasets of Beijing (in 2010 and 2011) and two 3-month GPS trajectory datasets (representing human mobility) generated by over 12,000 taxicabs in Beijing in 2010 and 2011 respectively. The results justify the advantages of our approach over baseline methods solely using POIs or human mobility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助dara采纳,获得10
1秒前
1秒前
1秒前
2秒前
斯文败类应助开心妍采纳,获得10
4秒前
超级的芹菜完成签到,获得积分10
4秒前
5秒前
茜茜发布了新的文献求助10
6秒前
Z_DinG完成签到,获得积分10
6秒前
勤劳寒烟完成签到,获得积分10
7秒前
和谐耳机完成签到 ,获得积分10
7秒前
科研通AI5应助Johnpick采纳,获得10
7秒前
饼干小子发布了新的文献求助10
7秒前
8秒前
张三发布了新的文献求助10
8秒前
9秒前
mmz完成签到 ,获得积分10
9秒前
Ldq完成签到 ,获得积分10
10秒前
11秒前
11秒前
呵呵哒的滴滴完成签到,获得积分10
11秒前
Arthur完成签到,获得积分10
12秒前
12秒前
yang发布了新的文献求助10
13秒前
Enoch发布了新的文献求助10
13秒前
李健的小迷弟应助lddd采纳,获得10
14秒前
Growth完成签到 ,获得积分10
14秒前
Hello应助外向访卉采纳,获得10
14秒前
nn发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
大个应助11采纳,获得10
16秒前
16秒前
无恙发布了新的文献求助10
16秒前
感动的便当完成签到,获得积分10
17秒前
18秒前
尘林发布了新的文献求助10
18秒前
传奇3应助干净以珊采纳,获得10
19秒前
19秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
The Effect of Irrigation Solutions on Recurrence of Chronic Subdural Hematoma: A Consecutive Cohort Study of 234 Patients 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Introduction to Linear Optimization, by Dimitris Bertsimas and John N. Tsitsiklis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828500
求助须知:如何正确求助?哪些是违规求助? 3370806
关于积分的说明 10465265
捐赠科研通 3090821
什么是DOI,文献DOI怎么找? 1700556
邀请新用户注册赠送积分活动 817893
科研通“疑难数据库(出版商)”最低求助积分说明 770571