EEG-based classification combining Bayesian convolutional neural networks with recurrence plot for motor movement/imagery

卷积神经网络 脑电图 人工智能 运动表象 计算机科学 模式识别(心理学) 脑-机接口 心理学 精神科
作者
Wenqie Huang,Guanghui Yan,Wenwen Chang,Yuchan Zhang,Yueting Yuan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:144: 109838-109838 被引量:22
标识
DOI:10.1016/j.patcog.2023.109838
摘要

Electroencephalogram (EEG)-based Motor imagery (MI) is a key topic in the brain-computer interface (BCI). The EEG-based real execution and motor imagery multi-class classification tasks are also crucial, but only a few kinds of literature research it. In addition, classification accuracy still has room for improvement, and the inter-individual variability problems in BCI applications need to be solved. To address these issues, we developed a novel model (RP-BCNNs) that combines the recurrence plot (RP) and Bayesian Convolutional Neural Networks (BCNNs). First, we employ an RP computation for preprocessed EEG signals of each channel and merge all RPs of all channels into one based on the weighted average method. Then, we feed the RP features into BCNNs to classify 2-class, 3-class, 4-class, and 5-class on real/imaginary movements classification tasks. The results show that the RP-BCNNs model outperforms the state-of-the-art methods, achieving average accuracies of 92.86%, 94.12%, 91.37%, 92.61% for real movements and 94.07%, 93.77%, 90.54%, 91.85% for imaginary movements. Our findings suggest that combining complex network methods with deep learning can improve the classification performance of EEG-based BCI systems (e.g., motor imagery, emotion recognition, and epileptic seizure classification).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emmm完成签到,获得积分10
刚刚
所所应助zhumengyu采纳,获得10
2秒前
2秒前
斯文败类应助LY采纳,获得10
2秒前
Rosechanel发布了新的文献求助10
2秒前
斯文败类应助禾禾采纳,获得10
2秒前
2秒前
科研通AI2S应助zhanghhsnow采纳,获得20
2秒前
长情尔曼完成签到,获得积分10
3秒前
青岩完成签到 ,获得积分10
3秒前
3秒前
3秒前
Wang发布了新的文献求助10
4秒前
专注秋尽完成签到,获得积分10
4秒前
4秒前
4秒前
刘十三发布了新的文献求助10
4秒前
5秒前
科研通AI5应助xuhang采纳,获得10
5秒前
5秒前
5秒前
七月完成签到,获得积分20
5秒前
迅速中蓝完成签到,获得积分10
6秒前
6秒前
6秒前
阿威完成签到,获得积分10
6秒前
隐形曼青应助务实的犀牛采纳,获得10
7秒前
8秒前
8秒前
长情尔曼发布了新的文献求助10
8秒前
sdl发布了新的文献求助10
8秒前
Shinewei发布了新的文献求助10
9秒前
小马甲应助ZZY采纳,获得10
9秒前
9秒前
9秒前
9秒前
lpydz完成签到,获得积分10
9秒前
青藤发布了新的文献求助80
10秒前
10秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809673
求助须知:如何正确求助?哪些是违规求助? 3354199
关于积分的说明 10369497
捐赠科研通 3070479
什么是DOI,文献DOI怎么找? 1686340
邀请新用户注册赠送积分活动 810900
科研通“疑难数据库(出版商)”最低求助积分说明 766433