Electro-optical characterization of arsenic-doped CdSeTe and CdTe solar cell absorbers doped in-situ during close space sublimation

升华(心理学) 掺杂剂 兴奋剂 碲化镉光电 太阳能电池 接受者 材料科学 异质结 光电子学 物理 凝聚态物理 心理学 心理治疗师
作者
Adam Danielson,Carey Reich,Ramesh Pandey,Amit Munshi,Arthur Onno,Will Weigand,Darius Kuciauskas,Siming Li,Alexandra Bothwell,Jinglong Guo,Magesh Murugeson,John S. McCloy,Robert F. Klie,Zachary C. Holman,Walajabad Sampath
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier BV]
卷期号:251: 112110-112110 被引量:11
标识
DOI:10.1016/j.solmat.2022.112110
摘要

Most contemporary device models predict that an acceptor concentration of at least 1016 cm−3 is required to reach an open circuit voltage of 1 V in polycrystalline CdTe-based solar cells. While copper has traditionally been used as the de facto p-type dopant in polycrystalline cadmium telluride (CdTe) and cadmium selenide telluride (CdSeTe), reaching high acceptor concentrations has proved to be challenging in such devices due to significant dopant compensation. The acceptor concentration in copper-doped CdTe and CdSeTe typically ranges from 1013 to 1015 cm−3 and routinely exhibit low external radiative efficiencies below 0.01%, limiting their implied voltage (i.e., quasi-Fermi level splitting) to approximately 900 mV. As an alternative to copper, this work explores the use of arsenic as a p-type dopant for CdTe and CdSeTe. Using a novel technique in which a thin layer of arsenic-containing material is deposited and used as a reservoir for arsenic to diffuse into a front layer of previously undoped material, this contribution demonstrates that high external radiative efficiencies are achievable, a direct result of combined high acceptor concentrations and long minority-carrier lifetimes in the absorber. This leads to improved implied voltages, and indicates that As-doping represents a promising pathway towards improving the external voltage of CdSeTe/CdTe solar cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小宝爸爸完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
5秒前
zho发布了新的文献求助10
6秒前
珺儿完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
珺儿发布了新的文献求助10
11秒前
12秒前
13秒前
杨志坚完成签到 ,获得积分10
13秒前
13秒前
Hina完成签到,获得积分10
14秒前
bkagyin应助小丑鱼儿采纳,获得10
14秒前
星光点点完成签到 ,获得积分10
16秒前
灵鹿发布了新的文献求助10
16秒前
16秒前
大鲨鱼完成签到,获得积分10
16秒前
16秒前
呆萌的太阳完成签到 ,获得积分10
17秒前
科研通AI5应助SunSun采纳,获得10
17秒前
17秒前
wsd发布了新的文献求助10
18秒前
白茶完成签到,获得积分10
18秒前
脑洞疼应助智慧的颜色采纳,获得10
19秒前
科研通AI2S应助坚果儿采纳,获得10
19秒前
20秒前
斯文的毛豆完成签到 ,获得积分10
21秒前
21秒前
爆米花应助冰千蕙采纳,获得10
22秒前
xiaochouyu发布了新的文献求助10
22秒前
23秒前
文静的千秋完成签到,获得积分10
24秒前
唐新惠完成签到 ,获得积分10
25秒前
852应助Selena采纳,获得10
25秒前
淡定诗柳完成签到,获得积分10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843639
求助须知:如何正确求助?哪些是违规求助? 3385923
关于积分的说明 10542998
捐赠科研通 3106709
什么是DOI,文献DOI怎么找? 1711095
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774383