材料科学
氧气
兴奋剂
价(化学)
X射线光电子能谱
分析化学(期刊)
费米能级
物理
原子物理学
结晶学
凝聚态物理
电子
核磁共振
化学
核物理学
量子力学
色谱法
作者
Andreas Klein,Alexander Frebel,Kim Alexander Creutz,Binxiang Huang
标识
DOI:10.1103/physrevmaterials.8.044601
摘要
The ultimate limits of the carrier concentrations in ${\mathrm{In}}_{2}{\mathrm{O}}_{3}$ and Sn-doped ${\mathrm{In}}_{2}{\mathrm{O}}_{3}$ are derived from operando photoelectron spectroscopy of a solid oxide electrochemical cell with Y-doped ${\mathrm{ZrO}}_{2}$ as the oxygen electrolyte. It is demonstrated that the limits are determined by the transition of the oxygen vacancy to the neutral state and to the reduction of ${\mathrm{Sn}}^{4+}$ donors to ${\mathrm{Sn}}^{2+}$ electron traps, respectively. Maximum Fermi energies of 3.85 and $3.35\phantom{\rule{0.16em}{0ex}}\mathrm{eV}$ above the valence band maximum are identified for ITO and ${\mathrm{In}}_{2}{\mathrm{O}}_{3}$. The ultimate carrier concentrations achievable by Sn doping and by oxygen vacancies are estimated to be $1.8--1.9\ifmmode\times\else\texttimes\fi{}{10}^{21}\phantom{\rule{0.16em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}3}$ and $6--7\ifmmode\times\else\texttimes\fi{}{10}^{20}\phantom{\rule{0.16em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}3}$.
科研通智能强力驱动
Strongly Powered by AbleSci AI