清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Soil carbon content prediction using multi-source data feature fusion of deep learning based on spectral and hyperspectral images

VNIR公司 高光谱成像 特征(语言学) 人工智能 传感器融合 计算机科学 模式识别(心理学) 多源 人工神经网络 融合机制 融合 特征提取 遥感 数学 地质学 统计 哲学 脂质双层融合 语言学
作者
Xueying Li,Zongmin Li,Huimin Qiu,Guangyuan Chen,Pingping Fan
出处
期刊:Chemosphere [Elsevier BV]
卷期号:336: 139161-139161 被引量:20
标识
DOI:10.1016/j.chemosphere.2023.139161
摘要

Visible near-infrared reflectance spectroscopy (VNIR) and hyperspectral images (HSI) have their respective advantages in soil carbon content prediction, and the effective fusion of VNIR and HSI is of great significance for improving the prediction accuracy. But the contribution difference analysis of multiple features in the multi-source data is inadequate, and there is a lack of in-depth research on the contribution difference analysis of artificial feature and deep learning feature. In order to solve the problem, soil carbon content prediction methods based on VNIR and HSI multi-source data feature fusion are proposed. The multi-source data fusion network under the attention mechanism and the multi-source data fusion network with artificial feature are designed. For the multi-source data fusion network based on the attention mechanism, the information are fused through the attention mechanism according to the contribution difference of each feature. For the other network, artificial feature are introduced to fuse multi-source data. The results show that multi-source data fusion network based on the attention mechanism can improve the prediction accuracy of soil carbon content, and multi-source data fusion network combined with artificial feature has better prediction effect. Compared with two single-source data from the VNIR and HSI, the relative percent deviation of Neilu, Aoshan Bay and Jiaozhou Bay based on multi-source data fusion network combined with artificial feature are increased by 56.81% and 149.18%, 24.28% and 43.96%, 31.16% and 28.73% respectively. This study can effectively solve the problem of the deep fusion of multiple features in the soil carbon content prediction by VNIR and HSI, so as to improve the accuracy and stability of soil carbon content prediction, promote the application and development of soil carbon content prediction in spectral and hyperspectral image, and provide technical support for the study of carbon cycle and the carbon sink.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
顾矜应助Dr.Zhang采纳,获得10
39秒前
殷勤的紫槐完成签到,获得积分0
1分钟前
li完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高高的丹雪完成签到 ,获得积分0
1分钟前
Dr.Zhang发布了新的文献求助10
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
hwen1998完成签到 ,获得积分10
2分钟前
蔡大大发布了新的文献求助10
2分钟前
薛家泰完成签到 ,获得积分10
2分钟前
酷波er应助倩倩14采纳,获得10
2分钟前
倩倩14完成签到,获得积分10
3分钟前
危机的觅风完成签到 ,获得积分10
4分钟前
4分钟前
飞龙在天完成签到 ,获得积分10
4分钟前
白天亮完成签到,获得积分10
5分钟前
路路完成签到 ,获得积分10
5分钟前
情怀应助ST采纳,获得10
7分钟前
程雪霞完成签到,获得积分10
7分钟前
7分钟前
ST发布了新的文献求助10
7分钟前
俏皮元珊完成签到 ,获得积分10
8分钟前
8分钟前
我很好完成签到 ,获得积分10
8分钟前
elsa622完成签到 ,获得积分10
8分钟前
Fairy完成签到,获得积分10
8分钟前
研友_nxw2xL完成签到,获得积分10
9分钟前
muriel完成签到,获得积分0
9分钟前
如歌完成签到,获得积分10
9分钟前
南瓜完成签到,获得积分10
9分钟前
10分钟前
自然亦凝完成签到,获得积分10
10分钟前
xukh发布了新的文献求助10
10分钟前
蝎子莱莱xth完成签到,获得积分10
10分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
11分钟前
Square完成签到,获得积分10
11分钟前
wanci应助醉熏的幼珊采纳,获得10
11分钟前
胜胜糖完成签到 ,获得积分10
11分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211516
求助须知:如何正确求助?哪些是违规求助? 4388001
关于积分的说明 13663401
捐赠科研通 4248118
什么是DOI,文献DOI怎么找? 2330754
邀请新用户注册赠送积分活动 1328526
关于科研通互助平台的介绍 1281490