Soil carbon content prediction using multi-source data feature fusion of deep learning based on spectral and hyperspectral images

VNIR公司 高光谱成像 特征(语言学) 人工智能 传感器融合 计算机科学 模式识别(心理学) 多源 人工神经网络 融合机制 融合 特征提取 遥感 数学 地质学 统计 哲学 脂质双层融合 语言学
作者
Xueying Li,Zongmin Li,Huimin Qiu,Guangyuan Chen,Pingping Fan
出处
期刊:Chemosphere [Elsevier BV]
卷期号:336: 139161-139161 被引量:17
标识
DOI:10.1016/j.chemosphere.2023.139161
摘要

Visible near-infrared reflectance spectroscopy (VNIR) and hyperspectral images (HSI) have their respective advantages in soil carbon content prediction, and the effective fusion of VNIR and HSI is of great significance for improving the prediction accuracy. But the contribution difference analysis of multiple features in the multi-source data is inadequate, and there is a lack of in-depth research on the contribution difference analysis of artificial feature and deep learning feature. In order to solve the problem, soil carbon content prediction methods based on VNIR and HSI multi-source data feature fusion are proposed. The multi-source data fusion network under the attention mechanism and the multi-source data fusion network with artificial feature are designed. For the multi-source data fusion network based on the attention mechanism, the information are fused through the attention mechanism according to the contribution difference of each feature. For the other network, artificial feature are introduced to fuse multi-source data. The results show that multi-source data fusion network based on the attention mechanism can improve the prediction accuracy of soil carbon content, and multi-source data fusion network combined with artificial feature has better prediction effect. Compared with two single-source data from the VNIR and HSI, the relative percent deviation of Neilu, Aoshan Bay and Jiaozhou Bay based on multi-source data fusion network combined with artificial feature are increased by 56.81% and 149.18%, 24.28% and 43.96%, 31.16% and 28.73% respectively. This study can effectively solve the problem of the deep fusion of multiple features in the soil carbon content prediction by VNIR and HSI, so as to improve the accuracy and stability of soil carbon content prediction, promote the application and development of soil carbon content prediction in spectral and hyperspectral image, and provide technical support for the study of carbon cycle and the carbon sink.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuki发布了新的文献求助10
刚刚
BlooM发布了新的文献求助10
1秒前
眭超阳完成签到 ,获得积分10
1秒前
开心完成签到,获得积分10
1秒前
初余发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
一捺发布了新的文献求助10
3秒前
Chen完成签到,获得积分10
3秒前
han发布了新的文献求助10
3秒前
可可杨发布了新的文献求助10
4秒前
于和水发布了新的文献求助10
5秒前
5秒前
任人壬发布了新的文献求助10
5秒前
寒舟饮完成签到,获得积分10
6秒前
Messi完成签到,获得积分10
7秒前
易柒发布了新的文献求助10
8秒前
彭于晏应助初余采纳,获得10
8秒前
天道酬勤发布了新的文献求助10
8秒前
8秒前
小怪完成签到,获得积分20
9秒前
feng发布了新的文献求助30
9秒前
yuki完成签到,获得积分20
9秒前
无花果应助稳重秋寒采纳,获得10
10秒前
思源应助大大采纳,获得10
11秒前
11秒前
情怀应助aniu采纳,获得10
12秒前
酷酷亦凝完成签到,获得积分10
13秒前
14秒前
14秒前
诸葛语琴发布了新的文献求助10
15秒前
15秒前
16秒前
科研助手6应助娇气的友易采纳,获得10
17秒前
17秒前
万元帅发布了新的文献求助10
18秒前
zzzzzzy发布了新的文献求助10
18秒前
李健的小迷弟应助abjjck采纳,获得10
18秒前
mehplamnha完成签到,获得积分10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813827
求助须知:如何正确求助?哪些是违规求助? 3358242
关于积分的说明 10392842
捐赠科研通 3075520
什么是DOI,文献DOI怎么找? 1689390
邀请新用户注册赠送积分活动 812756
科研通“疑难数据库(出版商)”最低求助积分说明 767387