材料科学
碳化
法拉第效率
化学工程
碳纤维
焦耳加热
储能
离子
纳米技术
微型多孔材料
电化学
复合材料
电极
热力学
化学
物理化学
复合数
工程类
扫描电子显微镜
功率(物理)
物理
量子力学
作者
Pengfei Huang,Zhaoxin Guo,Zekun Li,Li Chen,Wei‐Di Liu,Jiawei Luo,Zhedong Liu,Jingchao Zhang,Jianrong Zeng,Wenjun Zhang,Xinxi Zhang,Rongtao Zhu,Yanan Chen
标识
DOI:10.1002/adma.202507521
摘要
Abstract Conventional hard carbon synthesis through prolonged sintering suffers from structural degradation, including amorphous‐to‐graphitic transitions and pore collapse, critically impairing sodium storage performance. Here, a spatiotemporally controlled electrothermal coupling strategy is proposed that revolutionizes carbonization via in situ joule heating, achieving ultrafast synthesis (30 s) with preserved structural integrity. By precisely regulating current density distribution, this method enables defect‐selective graphitization while maintaining abundant micropores and expanded interlayer spacing (0.39 nm). The optimized hard carbon synthesized at 1000 °C demonstrates exceptional sodium storage capacity (306.83 mAh g −1 ) and record‐high initial Coulombic efficiency (91.99%), outperforming furnace sample by 16.7% in capacity. During the spatiotemporal evolution process, localized electric field can induce directional charge redistribution and lower C─C bond dissociation barriers, enabling rapid formation of microporous structure with enhanced Na⁺ diffusion kinetics and stable interfacial properties. Temporal superiority of this method is evidenced by 79.45% capacity retention after 1000 cycles. This work establishes a paradigm for energy‐efficient carbon material synthesis via spatiotemporal electrothermal control, providing fundamental insights into field‐assisted reaction kinetics for next‐generation battery manufacturing.
科研通智能强力驱动
Strongly Powered by AbleSci AI