已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A methodology to liberate critical metals in waste solar panel

硒化铜铟镓太阳电池 材料科学 光伏 光伏系统 冶金 太阳能电池 可再生能源 薄膜 纳米技术 工程类 光电子学 电气工程
作者
Mingkai Li,Samuel D. Widijatmoko,Zheng Wang,Philip Hall
出处
期刊:Applied Energy [Elsevier]
卷期号:337: 120900-120900 被引量:14
标识
DOI:10.1016/j.apenergy.2023.120900
摘要

The availability of critical metals is one of the driving factor to secure the transition of energy production to a renewable, low carbon one because of the material requirement in photovoltaic technology (PV), wind power generation and batteries. For example, precious metals are vital to manufacture crystalline silicon solar panel and tellurium, germanium, indium and gallium are essential in thin film photovoltaic panels. However, the pressure on the supply of critical metals increases with the growth of photovoltaics. Considering the resource availability, the recycling of critical metals from waste solar panels can enhance the sustainability of end-of-life management, although the recycled metal input is limited in present state. Among the recycling techniques, the separation and liberation of metals from non-metals are crucial. This study investigate a methodology to liberate thin film materials from copper indium gallium selenide (CIGS) thin-film solar panel to recycle photovoltaic material including indium and gallium via a mechanical process. An experimental technique using mineral processing techniques, crushing and grinding, are proposed to recycle critical metals from CIGS solar panel. In this study, the crushing experiments were conducted and the size based elemental distribution was analysed. The results showed crushing is capable to delaminate glass substrate and Fuerstenau upgrading curves and the ore separation degree were used to show that selective liberation occurs and the critical metals concentrate in coarse size fraction but may not be fully liberated. The morphology test using SEM-EDS to observe the surface of broken panel and the classification of broken particle based on size, metal concentration and surface morphology were conducted. The results suggested that approximately 90 w% of functional materials are still laminated on EVA in the size fraction larger greater than 2360 μm. It shows crushing alone will not fully liberate the material. Grinding can be used as a second stage recycling method, de-coating the target materials. The grinding test resulted in a more than 80 w% recovery rate of indium and the fine particle less than 38 μm contains more than 1500 ppm indium, more than 480 ppm gallium and 1500 ppm molybdenum. It could show that the combination of crushing and grinding is suitable to delaminate the panel and de-coat the critical metals to liberate and concentrate the metals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李顺利完成签到 ,获得积分10
1秒前
yolo完成签到,获得积分10
1秒前
秋祭完成签到 ,获得积分10
1秒前
Lucas应助江洋大盗采纳,获得10
2秒前
111完成签到 ,获得积分10
2秒前
沉默小笼包完成签到 ,获得积分10
2秒前
大力的宝川完成签到 ,获得积分10
3秒前
hjc完成签到,获得积分10
3秒前
kento完成签到,获得积分0
4秒前
笨笨烨华发布了新的文献求助10
5秒前
6秒前
6秒前
GRG完成签到 ,获得积分0
6秒前
阿敬完成签到,获得积分10
7秒前
7秒前
从容海完成签到 ,获得积分10
7秒前
青帝完成签到,获得积分10
9秒前
汉堡包应助帅气的凌寒采纳,获得10
10秒前
11秒前
蕙心完成签到 ,获得积分10
12秒前
12秒前
许愿完成签到 ,获得积分10
14秒前
科研通AI6应助zzzhou采纳,获得10
14秒前
天选小牛马完成签到 ,获得积分10
17秒前
BoBo完成签到 ,获得积分10
19秒前
dcx完成签到 ,获得积分10
20秒前
20秒前
大胆隶完成签到 ,获得积分10
20秒前
21秒前
感动手链完成签到,获得积分10
22秒前
22秒前
思源应助一点采纳,获得10
23秒前
MYL完成签到,获得积分10
23秒前
24秒前
AZN完成签到,获得积分10
24秒前
江洋大盗发布了新的文献求助10
25秒前
侠女完成签到 ,获得积分10
27秒前
舒心梦菲发布了新的文献求助10
27秒前
小王好饿完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534026
求助须知:如何正确求助?哪些是违规求助? 4622109
关于积分的说明 14581778
捐赠科研通 4562252
什么是DOI,文献DOI怎么找? 2499990
邀请新用户注册赠送积分活动 1479638
关于科研通互助平台的介绍 1450746