亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combination of effective color information and machine learning for rapid prediction of soil water content

偏最小二乘回归 支持向量机 人工智能 随机森林 克里金 RGB颜色模型 数学 模式识别(心理学) 计算机科学 统计
作者
Liu Guan-shi,Shengkui Tian,Guofang Xu,Chengcheng Zhang,Mingxuan Cai
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier BV]
卷期号:15 (9): 2441-2457 被引量:20
标识
DOI:10.1016/j.jrmge.2022.12.029
摘要

Soil water content (SWC) is one of the critical indicators in various fields such as geotechnical engineering and agriculture. To avoid the time-consuming, destructive, and laborious drawbacks of conventional SWC measurements, the image-based SWC prediction is considered based on recent advances in quantitative soil color analysis. In this study, a promising method based on the Gaussian-fitting gray histogram is proposed for extracting characteristic parameters by analyzing soil images, aiming to alleviate the interference of complex surface conditions with color information extraction. In addition, an identity matrix consisting of 32 characteristic parameters from eight color spaces is constituted to describe the multi-dimensional information of the soil images. Meanwhile, a subset of 10 parameters is identified through three variable analytical methods. Then, four machine learning models for SWC prediction based on partial least squares regression (PLSR), random forest (RF), support vector machines regression (SVMR), and Gaussian process regression (GPR), are established using 32 and 10 characteristic parameters, and their performance is compared. The results show that the characteristic parameters obtained by Gaussian-fitting can effectively reduce the interference from soil surface conditions. The RGB, CIEXYZ, and CIELCH color spaces and lightness parameters, as the inputs, are more suitable for the SWC prediction models. Furthermore, it is found that 10 parameters could also serve as optimal and generalizable predictors without considerably reducing prediction accuracy, and the GPR model has the best prediction performance (R2 ≥ 0.95, RMSE ≤ 2.01%, RPD ≥ 4.95, and RPIQ ≥ 6.37). The proposed image-based SWC predictive models combined with effective color information and machine learning can achieve a transient and highly precise SWC prediction, providing valuable insights for mapping soil moisture fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuiyu完成签到,获得积分20
3秒前
lcj2022发布了新的文献求助10
5秒前
9秒前
lcj2022完成签到,获得积分20
10秒前
15秒前
小书虫完成签到 ,获得积分10
20秒前
西行客完成签到,获得积分10
20秒前
小宝旅行记关注了科研通微信公众号
22秒前
任性柜子完成签到 ,获得积分10
23秒前
科目三应助科研通管家采纳,获得10
24秒前
典雅问寒应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI5应助机灵自中采纳,获得30
25秒前
33秒前
顾矜应助zzzxh采纳,获得10
47秒前
茉莉雨完成签到 ,获得积分10
49秒前
嗨是完成签到,获得积分10
51秒前
科研通AI2S应助小宝旅行记采纳,获得10
57秒前
58秒前
轩轩轩轩完成签到 ,获得积分10
1分钟前
追寻听南完成签到 ,获得积分10
1分钟前
Leon完成签到,获得积分10
1分钟前
碗在水中央完成签到 ,获得积分0
1分钟前
dkb完成签到,获得积分20
1分钟前
CodeCraft应助zz采纳,获得10
1分钟前
dkb发布了新的文献求助10
1分钟前
1分钟前
yema完成签到 ,获得积分10
1分钟前
欢喜小虾米完成签到 ,获得积分10
1分钟前
zz发布了新的文献求助10
1分钟前
可爱的函函应助dkb采纳,获得10
1分钟前
1分钟前
zz完成签到,获得积分10
1分钟前
小小怪发布了新的文献求助10
1分钟前
kakainho发布了新的文献求助10
1分钟前
2分钟前
2分钟前
zzzxh发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助奋斗广缘采纳,获得10
2分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843176
求助须知:如何正确求助?哪些是违规求助? 3385441
关于积分的说明 10540498
捐赠科研通 3106019
什么是DOI,文献DOI怎么找? 1710846
邀请新用户注册赠送积分活动 823771
科研通“疑难数据库(出版商)”最低求助积分说明 774264