已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reliable 2D-3D Registration in Dynamic Stereo-Radiography with Energy Barrier Constraints

图像配准 计算机视觉 人工智能 射线照相术 计算机科学 能量(信号处理) 医学影像学 医学物理学 图像(数学) 医学 物理 放射科 量子力学
作者
William S. Burton,Casey A. Myers,Chadd W. Clary,Paul J. Rullkoetter
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3522200
摘要

2D-3D registration of native anatomy in dynamic stereo-radiography is a fundamental task in orthopaedics methods that facilitates understanding of joint-level movement. Registration is commonly performed by optimizing a similarity metric which compares the appearances of captured radiographs to computed tomography-based digitally reconstructed radiographs, rendered as a function of pose. This optimization-based framework can accurately recover the pose of native anatomy in stereo-radiographs, but encounters convergence issues in practice, thus limiting the reliability of fully automatic registration. The current work improves the robustness of optimization-based 2D-3D registration through the introduction of data-driven constraints that restrict the set of evaluated pose candidates. Energy-based models are first developed to indicate the viability of anatomic poses, conditioned on target radiographs. Registration is then performed by ensuring that optimization methods search within regions that contain feasible poses, as dictated by energy-based models. The constraints which define these regions of interest are referred to as Energy Barrier Constraints. Experiments with stereo-radiographs capturing glenohumeral anatomy were performed to evaluate the proposed methods. Mean errors of 3.2-5.3 and 2.4-4.8 degrees or mm were observed for scapula and humerus degrees of freedom, respectively, when optimizing a conventional similarity metric. These errors were improved to 0.2-0.7 and 0.4-4.1 degrees or mm when augmenting the similarity metric with the proposed techniques. Results suggest that the introduced methods may benefit optimization-based 2D-3D registration through improved reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
派克kkk发布了新的文献求助10
刚刚
myth发布了新的文献求助10
2秒前
张奎应助kate采纳,获得160
2秒前
尘尘完成签到,获得积分10
2秒前
科研通AI5应助wugkazh采纳,获得30
3秒前
科研助手6应助SCI66采纳,获得10
4秒前
脆脆鲨完成签到,获得积分10
5秒前
大卷完成签到 ,获得积分10
5秒前
冷静乐天完成签到 ,获得积分10
13秒前
14秒前
顾矜应助清爽胡萝卜采纳,获得10
15秒前
17秒前
19秒前
lixiaopan2024完成签到,获得积分20
21秒前
maomaoyu发布了新的文献求助20
21秒前
SciGPT应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
orixero应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
23秒前
襄阳发布了新的文献求助10
24秒前
24秒前
个性书翠发布了新的文献求助10
24秒前
风趣的从梦完成签到,获得积分10
25秒前
研友_VZG7GZ应助旅途之人采纳,获得10
26秒前
小慧完成签到,获得积分10
26秒前
利维坦发布了新的文献求助10
27秒前
30秒前
32秒前
持卿应助凶狠的苗条采纳,获得10
33秒前
黎泱完成签到 ,获得积分10
33秒前
kk子完成签到,获得积分10
34秒前
34秒前
35秒前
ftl完成签到 ,获得积分20
36秒前
张喆完成签到,获得积分10
36秒前
郑思雨完成签到,获得积分20
36秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845361
求助须知:如何正确求助?哪些是违规求助? 3387557
关于积分的说明 10549919
捐赠科研通 3108283
什么是DOI,文献DOI怎么找? 1712532
邀请新用户注册赠送积分活动 824429
科研通“疑难数据库(出版商)”最低求助积分说明 774794