已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Performance of DCGAN in 3D Face Reconstruction

面子(社会学概念) 计算机科学 人工智能 计算机视觉 哲学 语言学
作者
Kriti Gupta,Meenu Gupta,Rakesh Kumar,Ahmed J. Obaid
标识
DOI:10.1109/incacct61598.2024.10551094
摘要

Because 3D face reconstruction has so many applications in virtual reality, biometrics, and entertainment, it has drawn a lot of interest in the domains of computer vision and graphics. Deep Convolutional Generative Adversarial Networks (DCGANs) have showed potential in producing realistic 3D facial structures from 2D photographs. This paper provides a comprehensive analysis of DCGANs for multi-dataset 3D face reconstruction. Although DCGANs have been successful in the past in reconstructing animal faces, this study demonstrates their promise for reconstructing human faces. Using an organized strategy, the DCGAN models were trained on several facial databases, such as the FaceWarehouse, Prospo, and CelebA datasets. Despite the encouraging results, the study discovered that DCGAN's effectiveness for 3D human facial reconstructions had limitations. Both qualitative and quantitative methods are applied to evaluate the suggested course of action. Standard deviation and mean square error are used in the quantitative analysis, while eye inspection of the reconstructed faces is used in the qualitative study. The researchers propose a hybrid model approach that combines DCGANs with additional techniques like landmark recognition and transfer learning to improve reconstruction accuracy and realism. This paper indicates topics for more research to develop the discipline and advances enhancing our comprehension of DCGANs in 3D face reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无问完成签到,获得积分10
刚刚
Firefly完成签到,获得积分10
刚刚
lxlcx应助努力毕业的胖秋采纳,获得40
刚刚
1秒前
lijinyu发布了新的文献求助30
2秒前
整齐凝竹完成签到 ,获得积分10
2秒前
2秒前
stuuuuuuuuuuudy完成签到 ,获得积分10
3秒前
可靠馒头完成签到,获得积分10
4秒前
Angel完成签到,获得积分20
4秒前
可乐加冰完成签到,获得积分10
5秒前
6秒前
Orange应助白宏宝采纳,获得10
6秒前
凡仔发布了新的文献求助10
7秒前
8秒前
无聊又夏完成签到,获得积分10
9秒前
今天没烦恼完成签到 ,获得积分10
9秒前
lyl关注了科研通微信公众号
10秒前
11秒前
陌殇完成签到 ,获得积分10
11秒前
大模型应助刻苦的安白采纳,获得10
12秒前
13秒前
jzy完成签到,获得积分10
13秒前
我又帅又红又专完成签到,获得积分10
15秒前
yudada完成签到 ,获得积分10
15秒前
16秒前
17秒前
21秒前
善学以致用应助苯基乙胺采纳,获得10
22秒前
23秒前
23秒前
干净南风发布了新的文献求助10
24秒前
标致的醉冬完成签到,获得积分10
24秒前
empty完成签到,获得积分10
25秒前
坦率的正豪完成签到,获得积分10
26秒前
小二郎应助王哈哈采纳,获得10
26秒前
27秒前
27秒前
lyl发布了新的文献求助20
28秒前
28秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
幼儿游戏与指导(第二版) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833490
求助须知:如何正确求助?哪些是违规求助? 3375943
关于积分的说明 10491212
捐赠科研通 3095520
什么是DOI,文献DOI怎么找? 1704423
邀请新用户注册赠送积分活动 820037
科研通“疑难数据库(出版商)”最低求助积分说明 771721