清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting postoperative complications after pneumonectomy using machine learning: a 10-year study

全肺切除术 医学 外科 肺癌 内科学
作者
Yaxuan Wang,Shiyang Xie,Jiayun Liu,He Wang,Jiangang Yu,Wenya Li,Aika Guan,Shun Xu,Yong Cui,Wenfei Tan
出处
期刊:Annals of Medicine [Informa]
卷期号:57 (1) 被引量:3
标识
DOI:10.1080/07853890.2025.2487636
摘要

Reducing postoperative cardiovascular and neurological complications (PCNC) during thoracic surgery is the key to improving postoperative survival. We aimed to investigate independent predictors of PCNC, develop machine learning models, and construct a predictive nomogram for PCNC in patients undergoing thoracic surgery for lung cancer. This study used data from a previous retrospective study of 16,368 patients with lung cancer (training set: 11,458; validation set: 4,910) with American Standards Association physical statuses I-IV who underwent surgery. Postoperative information was collected from electronic medical records to help build models based on cause-and-effect and statistical data, potentially revealing hidden dependencies between factors and diseases in a big data environment. The optimal model was analyzed and filtered using multiple machine-learning models (Logistic regression, eXtreme Gradient Boosting, Random forest, Light Gradient Boosting Machine and Naïve Bayes). A predictive nomogram was built and receiver operating characteristics were used to assess the validity of the model. The discriminative power and clinical validity were assessed using calibration and decision-making curve analyses. Multivariate logistic regression analysis revealed that age, surgery duration, intraoperative intercostal nerve block, postoperative patient-controlled analgesia, bronchial blocker use and sufentanil use were independent predictors of PCNC. Random forest was identified as the optimal model with an area under the curve of 0.898 in the training set and 0.752 in the validation set, confirming the excellent prediction accuracy of the nomogram. All the net benefits of the five machine-learning models in the training and validation sets demonstrated excellent clinical applicability, and the calibration curves showed good agreement between the predicted and observed risks. The combination of machine-learning models and nomograms may contribute to the early prediction and reduction in the incidence of PCNC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彩色的芷容完成签到 ,获得积分10
9秒前
可爱沛蓝完成签到 ,获得积分10
25秒前
西山菩提完成签到,获得积分10
46秒前
无悔完成签到 ,获得积分10
48秒前
49秒前
lorentzh完成签到,获得积分10
52秒前
Michael发布了新的文献求助10
54秒前
笑点低忆之完成签到 ,获得积分10
58秒前
朱杰鑫完成签到,获得积分10
1分钟前
1分钟前
zswybs发布了新的文献求助10
1分钟前
紫熊完成签到,获得积分10
1分钟前
fishss完成签到 ,获得积分10
1分钟前
Jasper应助zswybs采纳,获得10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
2分钟前
研友_nxw2xL完成签到,获得积分10
2分钟前
wanci应助fish采纳,获得10
2分钟前
muriel完成签到,获得积分0
2分钟前
神勇立果应助科研通管家采纳,获得10
2分钟前
神勇立果应助科研通管家采纳,获得10
2分钟前
如歌完成签到,获得积分10
2分钟前
2分钟前
fish发布了新的文献求助10
2分钟前
Aphcity举报gg求助涉嫌违规
2分钟前
在水一方应助净心采纳,获得10
2分钟前
3分钟前
净心发布了新的文献求助10
3分钟前
shanshanerchuan完成签到 ,获得积分10
3分钟前
一盏壶完成签到,获得积分10
3分钟前
净心完成签到 ,获得积分10
3分钟前
薛家泰完成签到 ,获得积分10
3分钟前
juan完成签到 ,获得积分10
4分钟前
研友_LpvQlZ完成签到,获得积分10
4分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
4分钟前
Square完成签到,获得积分10
4分钟前
4分钟前
神勇立果应助科研通管家采纳,获得10
4分钟前
mzhang2完成签到 ,获得积分10
5分钟前
AmyHu完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Impaired Driving as a Public Health Concern and Healthcare Technology Approaches 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5020276
求助须知:如何正确求助?哪些是违规求助? 4258774
关于积分的说明 13271609
捐赠科研通 4064142
什么是DOI,文献DOI怎么找? 2222903
邀请新用户注册赠送积分活动 1231917
关于科研通互助平台的介绍 1155321