Exploring Effective Factors for Improving Visual In-Context Learning

计算机科学 背景(考古学) 可视化 人工智能 上下文模型 计算机视觉 对象(语法) 古生物学 生物
作者
Yanpeng Sun,Qiang Chen,Jian Wang,Jingdong Wang,Zechao Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2025.3554410
摘要

The In-Context Learning (ICL) is to understand a new task via a few demonstrations (aka. prompt) and predict new inputs without tuning the models. While it has been widely studied in NLP, it is still a relatively new area of research in computer vision. To reveal the factors influencing the performance of visual in-context learning, this paper shows that Prompt Selection and Prompt Fusion are two major factors that have a direct impact on the inference performance of visual in-context learning. Prompt selection is the process of selecting the most suitable prompt for query image. This is crucial because high-quality prompts assist large-scale visual models in rapidly and accurately comprehending new tasks. Prompt fusion involves combining prompts and query images to activate knowledge within large-scale visual models. However, altering the prompt fusion method significantly impacts its performance on new tasks. Based on these findings, we propose a simple framework prompt-SelF to improve visual in-context learning. Specifically, we first use the pixel-level retrieval method to select a suitable prompt, and then use different prompt fusion methods to activate diverse knowledge stored in the large-scale vision model, and finally, ensemble the prediction results obtained from different prompt fusion methods to obtain the final prediction results. We conducted extensive experiments on single-object segmentation and detection tasks to demonstrate the effectiveness of prompt-SelF. Remarkably, prompt-SelF has outperformed OSLSM method-based meta-learning in 1-shot segmentation for the first time. This indicated the great potential of visual in-context learning. The source code and models will be available at https://github.com/syp2ysy/prompt-SelF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡图图发布了新的文献求助10
刚刚
ZDD发布了新的文献求助10
2秒前
2秒前
高大的向南完成签到,获得积分10
3秒前
3秒前
洪武发布了新的文献求助10
4秒前
贪玩飞机发布了新的文献求助10
4秒前
科研通AI5应助跳跃尔琴采纳,获得10
4秒前
容珏完成签到 ,获得积分10
4秒前
桃花不用开了完成签到 ,获得积分10
5秒前
是述不是沭完成签到,获得积分10
5秒前
欢欢完成签到,获得积分20
6秒前
CodeCraft应助抗体药物偶联采纳,获得30
7秒前
111完成签到,获得积分10
7秒前
一团小煤球完成签到,获得积分10
8秒前
OCDer应助111采纳,获得500
9秒前
Akim应助迷你的水绿采纳,获得10
9秒前
小趴菜完成签到 ,获得积分10
10秒前
研沫儿完成签到,获得积分10
10秒前
11秒前
顾矜应助ZTT采纳,获得10
13秒前
思源应助胡图图采纳,获得10
15秒前
liang完成签到 ,获得积分10
16秒前
zzzz完成签到 ,获得积分10
17秒前
欣欣发布了新的文献求助10
17秒前
18秒前
CodeCraft应助Xiaopei采纳,获得10
19秒前
碧蓝咖啡豆完成签到 ,获得积分10
19秒前
21秒前
wzy完成签到 ,获得积分10
23秒前
雪零铃发布了新的文献求助10
23秒前
reason完成签到,获得积分10
24秒前
李健的小迷弟应助旭日采纳,获得10
24秒前
chen完成签到,获得积分10
24秒前
高点点发布了新的文献求助10
25秒前
fangting完成签到,获得积分10
25秒前
英俊的铭应助时尚凡雁采纳,获得10
27秒前
28秒前
31秒前
31秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462906
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700312
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770458