Atomic dynamics of electrified solid-liquid interfaces in liquid cell TEM

化学物理 无定形固体 电解质 相间 电催化剂 纳米技术 电化学 催化作用 材料科学 化学 化学工程 电极 物理化学 结晶学 有机化学 生物 工程类 遗传学
作者
Haimei Zheng,Qiubo Zhang,Zhigang Song,Xianhu Sun,Yang Liu,Jiawei Wan,Sophia B. Betzler,Qi Zheng,Junyi Shangguan,Karen C. Bustillo,Peter Ercius,Prineha Narang,Yu Huang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3266358/v1
摘要

Abstract Electrified solid-liquid interfaces play a key role in various electrochemical processes relevant to electrocatalysis1-3, batteries4,5, and supercapacitors6,7 in energy science, and other processes in biology8 and geochemistry9. The electron and mass transport at the electrified interfaces may result in structural modifications that remarkably influence the reaction pathways, for example, electrocatalyst surface restructuring during reactions can significantly impact the catalysis mechanisms and reaction products1-3. Despite its significance, direct probing the atomic dynamics of solid-liquid interfaces under electric biasing is challenging due to the nature of being buried in liquid electrolytes and the limited spatial resolution of current techniques for in situ imaging through liquids. Here, with our development of advanced polymer electrochemical liquid cells for transmission electron microscopy, we are able to directly monitor the atomic dynamics of electrified solid-liquid interfaces during Cu-catalyzed CO2 electroreduction reactions. Our observation reveals a fluctuating liquid-like amorphous interphase. It undergoes reversible crystalline-amorphous structural transformations and flows along the electrified Cu surface, thus mediating the crystalline Cu surface restructuring and mass loss through the interphase layer. The combination of real-time observation and theoretical calculations unveils an amorphization-mediated restructuring mechanism resulting from charge-activated surface reactions with the electrolyte. Our results hold significant implications for utilizing transient interphase to control catalyst surface restructuring, thus tuning the catalytic reactions. It also opens many opportunities to explore the atomic dynamics and its impact in broad systems involving electrified solid-liquid interfaces by taking advantage of the in situ imaging capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘瀚臻发布了新的文献求助10
刚刚
mmmmm完成签到,获得积分10
1秒前
正直静曼发布了新的文献求助10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
一天完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得20
3秒前
科目三应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
万能图书馆应助李金金采纳,获得10
5秒前
小蘑菇应助刘瀚臻采纳,获得10
6秒前
乐乐应助刘瀚臻采纳,获得10
6秒前
liuze完成签到 ,获得积分10
6秒前
7秒前
SDM发布了新的文献求助10
7秒前
8秒前
科研通AI5应助辛勤的友灵采纳,获得10
9秒前
djx发布了新的文献求助10
9秒前
emma完成签到,获得积分10
10秒前
yu完成签到,获得积分10
12秒前
菜菜完成签到,获得积分10
12秒前
Cactus应助超级王国采纳,获得10
12秒前
高翠翠发布了新的文献求助10
13秒前
MiffyJia发布了新的文献求助10
14秒前
Zuix发布了新的文献求助20
14秒前
14秒前
15秒前
草莓苹果完成签到,获得积分10
17秒前
DongyangMiao完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087017
求助须知:如何正确求助?哪些是违规求助? 4302540
关于积分的说明 13408011
捐赠科研通 4127749
什么是DOI,文献DOI怎么找? 2260458
邀请新用户注册赠送积分活动 1264739
关于科研通互助平台的介绍 1198892