Computational ghost imaging based on an untrained neural network

计算机科学 人工神经网络 人工智能
作者
Shoupei Liu,Xiangfeng Meng,Yongkai Yin,Huazheng Wu,Wenjie Jiang
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:147: 106744-106744 被引量:74
标识
DOI:10.1016/j.optlaseng.2021.106744
摘要

• A computational ghost imaging method based on deep learning using an untrained neural network (UNNCGI) is proposed. • Without a large set of labeled data for prior training, the untrained neural network can reconstruct the object image by inputting a set of one-dimensional light intensity. • With the process of UNNCGI, this scheme improves the imaging efficiency and will promote the practical applications of ghost imaging. Ghost imaging based on deep learning (DLGI) usually employs a supervised learning strategy, and needs a large set of labeled data to train a neural network. However, in many practical applications, it is difficult to obtain sufficient numbers of labeled data for training and the training process often takes a long time. Thus, a computational ghost imaging method based on deep learning using an untrained neural network (UNNCGI) is proposed. The input to the network is just a set of one-dimensional light intensity values collected by a single-pixel detector and the neural network can be automatically optimized to generate restored images through the interaction between the network and the process of computational ghost imaging. Both simulation and experiment confirm the feasibility of this untrained network. The reconstructed image of UNNCGI has good quality, even at low sampling ratios, which improves the imaging efficiency and will promote the practical applications of ghost imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LW90发布了新的文献求助10
2秒前
2秒前
自然的岱周完成签到,获得积分10
3秒前
英姑应助秋秋采纳,获得10
3秒前
漫漫完成签到,获得积分10
3秒前
义气天空完成签到,获得积分10
4秒前
4秒前
4秒前
yijieLU完成签到,获得积分10
5秒前
浮游应助幸福的道天采纳,获得10
5秒前
非常发布了新的文献求助10
5秒前
与闲完成签到,获得积分10
6秒前
简单发布了新的文献求助10
7秒前
龙辉完成签到,获得积分10
7秒前
吴彦祖发布了新的文献求助10
7秒前
8秒前
鳗鱼思真发布了新的文献求助10
8秒前
雷7967发布了新的文献求助10
10秒前
康K发布了新的文献求助30
10秒前
Willwzh完成签到,获得积分10
11秒前
华仔应助要减肥的牛马采纳,获得10
11秒前
12秒前
12秒前
姜大头完成签到,获得积分10
12秒前
爬金字塔的蜗牛完成签到,获得积分10
13秒前
小谭完成签到 ,获得积分10
14秒前
大模型应助光亮妙之采纳,获得10
15秒前
mia完成签到,获得积分10
16秒前
浩然山河完成签到,获得积分10
16秒前
Jasper应助RUI采纳,获得10
17秒前
无语的夜春完成签到,获得积分20
17秒前
17秒前
17秒前
yimu发布了新的文献求助10
18秒前
dDD完成签到,获得积分10
18秒前
laola发布了新的文献求助10
18秒前
文艺沉鱼完成签到 ,获得积分10
18秒前
完美完成签到,获得积分10
18秒前
传奇3应助lc采纳,获得10
19秒前
sh完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5440761
求助须知:如何正确求助?哪些是违规求助? 4551594
关于积分的说明 14230816
捐赠科研通 4472650
什么是DOI,文献DOI怎么找? 2450969
邀请新用户注册赠送积分活动 1441964
关于科研通互助平台的介绍 1418184