Efficient computational design of two-dimensional van der Waals heterostructures: Band alignment, lattice mismatch, and machine learning

异质结 电子波段 密度泛函理论 格子(音乐) 类型(生物学) 电子能带结构 材料科学 凝聚态物理 计算机科学 机器学习 物理 量子力学 生态学 声学 生物
作者
Kamal Choudhary,Kevin F. Garrity,Steven Hartman,Ghanshyam Pilania,Francesca Tavazza
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:7 (1) 被引量:29
标识
DOI:10.1103/physrevmaterials.7.014009
摘要

We develop a computational database, website applications (web-apps), and machine-learning (ML) models to accelerate the design and discovery of two-dimensional (2D) heterostructures. Using density functional theory (DFT) based lattice parameters and electronic band energies for 674 nonmetallic exfoliable 2D materials, we generate 226 779 possible bilayer heterostructures. We classify these heterostructures into type-I, -II, and -III systems according to Anderson's rule, which is based on the relative band alignments of the noninteracting monolayers. We find that type II is the most common and type III the least common heterostructure type. We subsequently analyze the chemical trends for each heterostructure type in terms of the Periodic Table of constituent elements. The band alignment data can also be used for identifying photocatalysts and high-work-function 2D metals for contacts. We validate our results by comparing them to experimental data as well as hybrid-functional predictions. Additionally, we carry out DFT calculations of a few selected systems ($\mathrm{Mo}{\mathrm{S}}_{2}/\mathrm{W}{\mathrm{Se}}_{2}, \mathrm{Mo}{\mathrm{S}}_{2}/\text{h-BN}$, and $\mathrm{Mo}{\mathrm{Se}}_{2}/\mathrm{Cr}{\mathrm{I}}_{3}$), to compare the band-alignment description with the predictions from Anderson's rule. We develop web-apps to enable users to virtually create combinations of 2D materials and predict their properties. Additionally, we use ML tools to predict band-alignment information for 2D materials. The web-apps, tools, and associated data will be distributed through the jarvis-heterostructure website. Our analysis, results, and the developed web-apps can be applied to the screening and design applications, such as finding alternative photocatalysts, photodetectors, and high-work-function (WF) 2D-metal contacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
caffeine发布了新的文献求助10
1秒前
1秒前
wcy完成签到 ,获得积分10
3秒前
3秒前
5秒前
5秒前
JiaqiDijon完成签到,获得积分10
6秒前
7秒前
LC发布了新的文献求助10
7秒前
缥缈青丝发布了新的文献求助10
7秒前
orixero应助尊敬代亦采纳,获得10
8秒前
8秒前
Ava应助Voyage采纳,获得10
9秒前
ray发布了新的文献求助10
11秒前
HJJHJH发布了新的文献求助30
12秒前
拼搏的明轩完成签到 ,获得积分10
13秒前
xxiaobai发布了新的文献求助10
13秒前
zzzxh完成签到,获得积分20
14秒前
JamesPei应助醉熏的以云采纳,获得10
15秒前
orixero应助小董不懂采纳,获得10
15秒前
18秒前
coini完成签到,获得积分20
19秒前
QW发布了新的文献求助10
19秒前
20秒前
科研通AI2S应助快乐的雨竹采纳,获得10
22秒前
FashionBoy应助102755采纳,获得10
23秒前
称心热狗发布了新的文献求助10
23秒前
23秒前
24秒前
Jasper应助xxiaobai采纳,获得10
24秒前
xiaowang完成签到,获得积分10
25秒前
薛强发布了新的文献求助10
25秒前
loen发布了新的文献求助10
26秒前
27秒前
27秒前
ML发布了新的文献求助10
27秒前
打卡下班应助闲听花落采纳,获得10
30秒前
情怀应助wjx采纳,获得10
30秒前
关美人儿完成签到,获得积分10
31秒前
慕青应助缥缈青丝采纳,获得10
31秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4121085
求助须知:如何正确求助?哪些是违规求助? 3659143
关于积分的说明 11582998
捐赠科研通 3360632
什么是DOI,文献DOI怎么找? 1846540
邀请新用户注册赠送积分活动 911218
科研通“疑难数据库(出版商)”最低求助积分说明 827376