A Multi-View Spatio-Temporal Feature Fusion Approach for Wind Turbine Condition Monitoring Based on SCADA Data

SCADA系统 计算机科学 风力发电 传感器融合 特征(语言学) 涡轮机 实时计算 状态监测 融合 数据挖掘 人工智能 工程类 航空航天工程 语言学 哲学 电气工程
作者
Wang Hong,Hui Xie,Shuwei Liu,Songsong Song,Wei Han
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 43948-43957 被引量:1
标识
DOI:10.1109/access.2024.3379529
摘要

Condition monitoring of wind turbines is critical for increasing the reliability of the turbines and reducing their operation and maintenance costs. Supervisory control and data acquisition (SCADA) systems have been widely regarded as a promising technique to monitor the health status of turbines due to their abundance and cost-effective operation data. However, SCADA data are fundamentally multivariate time series with inherent spatio-temporal correlations. Therefore, it is still difficult to extract such correlations and then accurately identify the health status. This paper proposes a novel multi-view spatio-temporal feature fusion approach (MVSTCNN) based on convolutional neural networks (CNN) for condition monitoring of wind turbines. Specifically, multiple CNN modules with convolutional kernels of varying sizes are designed to extract correlations among several sensor variables and the temporal dependency concealed in each variable in parallel. A main advantage of the proposed method is its capacity to capture multiscale local information and global information simultaneously in both temporal and spatial dimensions, which improves the performance of condition monitoring. Real SCADA data from a wind farm is utilized to evaluate the effectiveness and superiority of the proposed approach. The result demonstrates that the proposed approach is effective for early fault detection in wind turbines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助无辜问枫采纳,获得10
1秒前
qpp完成签到,获得积分10
3秒前
4秒前
5秒前
Jackie完成签到,获得积分10
6秒前
科研通AI5应助李霞采纳,获得10
7秒前
ertzxc完成签到,获得积分10
9秒前
9秒前
Freeman0721发布了新的文献求助50
10秒前
波子完成签到,获得积分20
11秒前
echo完成签到 ,获得积分10
11秒前
银河打工人完成签到,获得积分10
11秒前
酷波er应助qq采纳,获得10
12秒前
13秒前
陈1完成签到,获得积分20
14秒前
yang发布了新的文献求助30
14秒前
ri_290完成签到,获得积分10
15秒前
16秒前
yjf,123完成签到 ,获得积分20
17秒前
17秒前
18秒前
传奇3应助人来人往采纳,获得10
18秒前
科研通AI5应助hahahahaha采纳,获得10
18秒前
18秒前
科研yu完成签到,获得积分10
19秒前
大模型应助yang采纳,获得30
19秒前
星辰大海应助imp采纳,获得10
20秒前
SYLH应助AYF采纳,获得30
22秒前
ftl发布了新的文献求助30
22秒前
orixero应助深山已晚采纳,获得10
22秒前
小鹏哥完成签到,获得积分10
23秒前
波子发布了新的文献求助10
23秒前
江凡儿发布了新的文献求助10
23秒前
JasonQAQ发布了新的文献求助10
23秒前
25秒前
26秒前
轴承完成签到 ,获得积分10
27秒前
27秒前
SYLH应助Jacey79采纳,获得10
28秒前
29秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825871
求助须知:如何正确求助?哪些是违规求助? 3368162
关于积分的说明 10449560
捐赠科研通 3087618
什么是DOI,文献DOI怎么找? 1698750
邀请新用户注册赠送积分活动 816999
科研通“疑难数据库(出版商)”最低求助积分说明 769991