GLaLT: Global-Local Attention-Augmented Light Transformer for Scene Text Recognition

计算机科学 变压器 编码器 预处理器 人工智能 语音识别 计算机工程 模式识别(心理学) 电压 工程类 操作系统 电气工程
作者
Hui Zhang,Guiyang Luo,Jian Kang,Shan Huang,Xiao Wang,Fei‐Yue Wang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (7): 10145-10158 被引量:10
标识
DOI:10.1109/tnnls.2023.3239696
摘要

Recent years have witnessed the growing popularity of connectionist temporal classification (CTC) and attention mechanism in scene text recognition (STR). CTC-based methods consume less time with few computational burdens, while they are not as effective as attention-based methods. To retain computational efficiency and effectiveness, we propose the global-local attention-augmented light Transformer (GLaLT), which adopts a Transformer-based encoder-decoder structure to orchestrate CTC and attention mechanism. The encoder integrates the self-attention module with the convolution module to augment the attention, where the self-attention module pays more attention to capturing long-term global dependencies and the convolution module focuses on local context modeling. The decoder consists of two parallel modules: one is the Transformer-decoder-based attention module and the other is the CTC module. The first one is removed in the testing phase and can guide the second one to extract robust features in the training phase. Extensive experiments on standard benchmarks demonstrate that GLaLT achieves state-of-the-art performance for both regular and irregular STR. In terms of tradeoffs, the proposed GLaLT is at or near the frontiers for maximizing speed, accuracy, and computational efficiency at the same time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天川发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
zzcherished完成签到,获得积分10
3秒前
小沫发布了新的文献求助30
4秒前
4秒前
5秒前
Austin完成签到,获得积分10
5秒前
徐小发布了新的文献求助10
6秒前
俊逸沛菡发布了新的文献求助10
6秒前
hn完成签到,获得积分10
6秒前
6秒前
许安发布了新的文献求助10
7秒前
追寻青柏完成签到,获得积分10
7秒前
7秒前
天川完成签到,获得积分10
7秒前
水虎完成签到,获得积分10
8秒前
冰魂应助chentle采纳,获得10
8秒前
杨威臣发布了新的文献求助30
9秒前
7788999发布了新的文献求助10
9秒前
nozero应助zhenpeng8888采纳,获得30
9秒前
酷酷问夏发布了新的文献求助10
10秒前
汉堡包应助嬛嬛采纳,获得10
10秒前
10秒前
Akim应助无限的谷丝采纳,获得10
10秒前
10秒前
落寞萤发布了新的文献求助30
11秒前
我是老大应助徐小采纳,获得30
11秒前
蓉儿完成签到 ,获得积分10
12秒前
深情安青应助z1z1z采纳,获得10
12秒前
小沫完成签到,获得积分10
12秒前
happy123发布了新的文献求助10
15秒前
外向语蝶发布了新的文献求助10
16秒前
今后应助科研通管家采纳,获得10
16秒前
Pothos应助科研通管家采纳,获得10
17秒前
852应助泥盆纪的鱼采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810315
求助须知:如何正确求助?哪些是违规求助? 3354794
关于积分的说明 10372611
捐赠科研通 3071237
什么是DOI,文献DOI怎么找? 1686836
邀请新用户注册赠送积分活动 811251
科研通“疑难数据库(出版商)”最低求助积分说明 766510