Accurate de novo design of high-affinity protein binding macrocycles using deep learning

蛋白质设计 化学 组合化学 计算生物学 蛋白质结构 生物化学 生物
作者
Stephen Rettie,David Juergens,Victor Adebomi,Yensi Flores Bueso,Qinqin Zhao,Alexandria N. Leveille,Andi Liu,Asim K. Bera,Joana A. Wilms,Alina Üffing,Alex Kang,Evans Brackenbrough,Mila Lamb,Stacey Gerben,Analisa Murray,Paul M. Levine,Manfred Schneider,Vibha Vasireddy,Sergey Ovchinnikov,Oliver H. Weiergräber
标识
DOI:10.1101/2024.11.18.622547
摘要

ABSTRACT The development of macrocyclic binders to therapeutic proteins typically relies on large-scale screening methods that are resource-intensive and provide little control over binding mode. Despite considerable progress in physics-based methods for peptide design and deep-learning methods for protein design, there are currently no robust approaches for de novo design of protein-binding macrocycles. Here, we introduce RFpeptides, a denoising diffusion-based pipeline for designing macrocyclic peptide binders against protein targets of interest. We test 20 or fewer designed macrocycles against each of four diverse proteins and obtain medium to high-affinity binders against all selected targets. Designs against MCL1 and MDM2 demonstrate K D between 1-10 μM, and the best anti-GABARAP macrocycle binds with a K D of 6 nM and a sub-nanomolar IC 50 in vitro . For one of the targets, RbtA, we obtain a high-affinity binder with K D < 10 nM despite starting from the target sequence alone due to the lack of an experimentally determined target structure. X-ray structures determined for macrocycle-bound MCL1, GABARAP, and RbtA complexes match very closely with the computational design models, with three out of the four structures demonstrating Ca RMSD of less than 1.5 Å to the design models. In contrast to library screening approaches for which determining binding mode can be a major bottleneck, the binding modes of RFpeptides-generated macrocycles are known by design, which should greatly facilitate downstream optimization. RFpeptides thus provides a powerful framework for rapid and custom design of macrocyclic peptides for diagnostic and therapeutic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
你好可爱完成签到,获得积分10
1秒前
1秒前
2秒前
研友_VZG7GZ应助猪猪hero采纳,获得10
2秒前
逃离地球完成签到 ,获得积分10
2秒前
写论文发布了新的文献求助30
5秒前
5秒前
你好可爱发布了新的文献求助10
6秒前
cai完成签到,获得积分10
7秒前
追梦发布了新的文献求助10
9秒前
11秒前
芋头读文献完成签到,获得积分10
12秒前
猪猪hero发布了新的文献求助10
16秒前
爆米花应助大方元风采纳,获得10
20秒前
曹中明完成签到,获得积分10
21秒前
酒吧舞男茜茜妈完成签到 ,获得积分10
26秒前
11111完成签到,获得积分10
31秒前
高兴的半仙完成签到,获得积分10
32秒前
MosenL应助复杂念梦采纳,获得10
34秒前
酷酷海豚完成签到,获得积分10
37秒前
37秒前
大方元风发布了新的文献求助10
38秒前
105完成签到 ,获得积分10
41秒前
六月歌者发布了新的文献求助10
41秒前
斑点完成签到,获得积分10
43秒前
ZYN完成签到,获得积分10
44秒前
Jonas完成签到,获得积分10
46秒前
Atopos完成签到,获得积分10
46秒前
FOODHUA完成签到,获得积分10
48秒前
49秒前
小鸟芋圆露露完成签到 ,获得积分10
52秒前
lihang完成签到,获得积分10
54秒前
dddd发布了新的文献求助10
54秒前
CipherSage应助追梦采纳,获得10
56秒前
科研通AI5应助六月歌者采纳,获得10
1分钟前
1分钟前
Augusterny完成签到 ,获得积分10
1分钟前
liuxg_2000完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779459
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220692
捐赠科研通 3040129
什么是DOI,文献DOI怎么找? 1668576
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522