Development of a Solid-State Ta-Doped Lithium Lanthanum Zirconium Oxide Electrolyte for All-Solid-State Lithium Batteries (ASSLBs)

材料科学 电解质 锂(药物) 烧结 阳极 离子电导率 阴极 快离子导体 氧化物 磷酸钒锂电池 化学工程 电极 陶瓷 无机化学 冶金 化学 物理化学 医学 工程类 内分泌学
作者
Dillip K. Panda,Stephen E. Creager,Rajendra K. Bordia
出处
期刊:Meeting abstracts 卷期号:MA2022-02 (4): 496-496
标识
DOI:10.1149/ma2022-024496mtgabs
摘要

Large, high-power batteries are necessary for electric vehicles. The safety of batteries is also crucial, as damaged batteries should not be combustible. Moreover, in some cases batteries need to operate a modestly high temperatures in the range of 100 - 150 0 C. All-solid-state lithium batteries (ASSLBs) can handle these requirements with ceramic electrolytes, lithium intercalation cathodes, and lithium metal anodes. Although ASSLBs using variations on this material set have been demonstrated, they tend to have low power, in part because of low ionic conductivity, as well as low rates of interfacial reaction between electrodes and electrolytes. Various strategies are being investigated to address the challenge of low power including operating at elevated temperatures, using doped electrolytes, increasing the contact area between the electrodes and the electrolyte, and through engineering of the interfaces between electrodes and electrolytes. Using tape casting followed by sintering, we are producing thin (~20µm) and dense Ta-doped Lithium Lanthanum Zirconium Oxide (LLZTO) films, and also LLZTO pellets. The challenge of Li-loss during sintering has been addressed by using suitable sintering aids and sacrificial Li source. We have characterized LLZTO films and pellets using techniques such as XRD, SEM, and SEM EXA. The electrochemical properties of the LLZTO electrolyte including ionic conductivity have been measured. This is the first step in the creation of a full cell with engineered electrodes and interfaces. An analytical model has been developed to examine the effect of thickness of anode, cathode, and current collector on energy density.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的尔竹完成签到,获得积分10
刚刚
十七发布了新的文献求助10
1秒前
m(_._)m完成签到 ,获得积分0
3秒前
5秒前
5秒前
奈何发布了新的文献求助10
5秒前
5秒前
6秒前
悠悠发布了新的文献求助10
6秒前
红烧板蓝根完成签到,获得积分10
7秒前
8秒前
辛勤夜柳发布了新的文献求助10
9秒前
笑点低的凝阳完成签到,获得积分10
10秒前
开放远航发布了新的文献求助10
10秒前
云山发布了新的文献求助30
10秒前
船夫发布了新的文献求助30
14秒前
852应助悠悠采纳,获得10
14秒前
木头人完成签到,获得积分10
14秒前
今后应助阿卫采纳,获得10
17秒前
奈何完成签到,获得积分10
18秒前
科目三应助小晨要发papper采纳,获得10
18秒前
糟糕的铁身应助RingCake采纳,获得10
18秒前
rocky15应助小岳同学采纳,获得50
21秒前
xly完成签到,获得积分10
25秒前
欢喜忆安完成签到,获得积分10
31秒前
葛力发布了新的文献求助10
33秒前
晚灯君完成签到 ,获得积分10
38秒前
楼亦玉完成签到,获得积分10
40秒前
40秒前
船夫完成签到,获得积分20
40秒前
戈屿发布了新的文献求助10
45秒前
huhuhuuh完成签到,获得积分10
46秒前
戈屿完成签到 ,获得积分10
47秒前
47秒前
科研通AI2S应助coolru采纳,获得10
48秒前
12343123完成签到,获得积分10
49秒前
开放远航完成签到,获得积分10
49秒前
打工是不可能打工的完成签到 ,获得积分10
49秒前
51秒前
桐桐应助科研通管家采纳,获得30
51秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
行動データの計算論モデリング 強化学習モデルを例として 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2547487
求助须知:如何正确求助?哪些是违规求助? 2176273
关于积分的说明 5603229
捐赠科研通 1897045
什么是DOI,文献DOI怎么找? 946546
版权声明 565383
科研通“疑难数据库(出版商)”最低求助积分说明 503793