过度拟合
自回归模型
星型
SETAR公司
非线性自回归外生模型
系列(地层学)
选型
非线性系统
Lasso(编程语言)
时间序列
最小二乘函数近似
数学
数学优化
计算机科学
计量经济学
自回归积分移动平均
统计
人工智能
人工神经网络
物理
万维网
生物
量子力学
古生物学
估计员
作者
Shangfeng Zeng,Haoxuan Li,Xiangfeng Yang
标识
DOI:10.1142/s1752890922430061
摘要
Uncertain time series models have been proposed to forecast future data based on imprecise known data. As an uncertain time series model, the uncertain threshold autoregressive model was proposed to deal with nonlinear data. The previous study estimated the unknown parameters in the uncertain threshold autoregressive model with the least-squares estimation. However, for nonlinear time series models, the least-squares estimation may cause overfitting of the model. To deal with this problem, this paper adds the least absolute shrinkage and selection operator penalty to the uncertain threshold autoregressive model to alleviate the level of overfitting. In addition, this paper uses the sum of square errors criterion to select the optimum order of the model. Finally, a real stock price example is provided to compare two different parameter estimation methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI