化学气相沉积
材料科学
分析化学(期刊)
深能级瞬态光谱
镓
杂质
兴奋剂
金属有机气相外延
沉积(地质)
肖特基二极管
二极管
光电子学
纳米技术
化学
硅
冶金
外延
有机化学
色谱法
图层(电子)
古生物学
生物
沉积物
作者
Hemant Ghadi,Joe F. McGlone,Evan M. Cornuelle,Zixuan Feng,Yuxuan Zhang,Lingyu Meng,Hongping Zhao,Aaron R. Arehart,Steven A. Ringel
出处
期刊:APL Materials
[American Institute of Physics]
日期:2022-10-01
卷期号:10 (10)
被引量:13
摘要
This study provides the full-bandgap evaluation of defect state distributions in beta phase gallium oxide (β-Ga2O3) grown by low-pressure chemical vapor deposition (LPCVD) on (010) β-Ga2O3 substrates at high growth of up to 20 µm/h. Deep-level optical spectroscopy and deep-level transient spectroscopy measurements applied to Ni/β-Ga2O3 Schottky diodes revealed the presence of a previously unreported defect state at EC-3.6 eV, which dominated the overall trap distribution in LPCVD grown material. However, states at EC-0.8 eV, EC-2.0 eV, and EC-4.4. eV were also detected, similar to prior studies on β-Ga2O3 grown by other methods, with similar or lower concentrations for the LPCVD samples. The EC-0.8 eV and EC-2.0 eV states were previously connected to residual Fe impurities and gallium vacancies, respectively. The total concentration of traps in the LPCVD material was on par with or lower than the state-of-the-art metal–organic chemical vapor deposition-grown materials despite the much higher growth rate, and the distribution of states showed negligible dependence on SiCl4 flow rate and doping concentration. These results demonstrate that the high growth rate of LPCVD-grown β-Ga2O3 is very promising for achieving thick, low defect density, and high-quality layers needed for multi-kV device applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI