Newsvendor Problems With Product Unbundling: An Approach Combining Robust Optimization With Deep Reinforcement Learning

报童模式 计算机科学 稳健优化 强化学习 分拆 利润(经济学) 数学优化 马尔可夫决策过程 捆绑 斯塔克伯格竞赛 产品(数学) 运筹学 微观经济学 人工智能 供应链 业务 经济 数学 马尔可夫过程 营销 几何学 万维网 统计 材料科学 复合材料
作者
Xiaoli Yan,Frank Chen,Hui Yu,Jiawen Li
出处
期刊:Production and Operations Management [Wiley]
标识
DOI:10.1177/10591478251344225
摘要

In fashion, food processing, petrochemical production, and agriculture, products (items) are often bundled in a prefixed assortment, with a given ratio for each product. For example, one case of men’s shoes may contain 24 pairs of different sizes of the same design. Of the 24 pairs, there is one size 7 pair, four sizes 9, and so on. Moreover, those pairs of shoes are packaged independently for retailing. Retailers of such products order them in bundles and then resell them unbundled. In this study, we propose and analyze a newsvendor model in which a retailer decides the order quantity of the whole bundle before the uncertain demand for each product/item is realized. We call it a product unbundling newsvendor problem (PUNP): How should the retailer decide the ordering quantity of a product bundle to meet the unknown demands of individual items to maximize its expected profit? We approach this problem with a robust optimization approach that assumes the means and covariance matrix of stochastic demands but not the demand distributions. However, the robust approach that considers the worst-case demand scenario is perceived to be conservative. In this study, we incorporate the distributionally robust optimization with deep reinforcement learning (DRL) and propose a new paradigm of robust learning to improve the robust decision quality. We take this robust solution, that is, the order quantity and profit, as human domain knowledge and implement it into the decision-making process of DRL by designing a policy transfer mechanism. Unsurprisingly, the exact robust solution is computationally intractable; thus, we provide an approximate solution. Simulations were conducted based on limited data sizes, confirming that our approach effectively improves robust performance. Moreover, the hybrid approach significantly outperforms the DRL approach. In the meantime, reduced computing costs and increased interpretability of decision recommendations may facilitate the deployment of DRL algorithms in operational practice. Furthermore, the successful application of the hybrid approach in addressing several variants of the PUNP indicates that the proposed mechanism may provide a pathway for solving complex operational problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心八宝粥完成签到,获得积分10
1秒前
1秒前
隐形曼青应助pomelo采纳,获得10
1秒前
huandiyu完成签到,获得积分10
1秒前
2秒前
2秒前
单薄紫菜发布了新的文献求助10
3秒前
3秒前
先锋完成签到 ,获得积分10
4秒前
4秒前
4秒前
whutyoyo完成签到,获得积分20
4秒前
顺利念双完成签到,获得积分10
4秒前
希望天下0贩的0应助郝誉采纳,获得10
4秒前
5秒前
5秒前
小小学神发布了新的文献求助10
5秒前
张嘉雯发布了新的文献求助10
5秒前
5秒前
阿可阿可完成签到,获得积分10
6秒前
6秒前
olivia完成签到,获得积分10
6秒前
6秒前
开朗馒头完成签到,获得积分10
6秒前
影子完成签到,获得积分10
6秒前
IchenNG发布了新的文献求助10
6秒前
mmiii完成签到,获得积分10
7秒前
深情安青应助这丁采纳,获得10
8秒前
研友_VZG7GZ应助心念采纳,获得10
8秒前
8秒前
赘婿应助飞云采纳,获得10
8秒前
任全强发布了新的文献求助10
8秒前
赘婿应助任成艳采纳,获得10
9秒前
畅畅发布了新的文献求助10
9秒前
Cactus发布了新的文献求助10
9秒前
9秒前
分析发布了新的文献求助10
10秒前
10秒前
hao发布了新的文献求助10
10秒前
sakris发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071945
求助须知:如何正确求助?哪些是违规求助? 4292467
关于积分的说明 13374776
捐赠科研通 4113406
什么是DOI,文献DOI怎么找? 2252418
邀请新用户注册赠送积分活动 1257312
关于科研通互助平台的介绍 1190103