Machine Learning for Prediction of Cancer-Associated Venous Thromboembolism

医学 内科学 癌症 血栓形成 肿瘤科 队列 肺栓塞 部分凝血活酶时间 体质指数 外科 血小板
作者
Simon Mantha,Andrew Dunbar,Kelly L. Bolton,Sean M. Devlin,Dmitriy Gorenshteyn,Mark T.A. Donoghue,Maria E. Arcila,Gerald A. Soff
出处
期刊:Blood [Elsevier BV]
卷期号:136 (Supplement 1): 37-37 被引量:1
标识
DOI:10.1182/blood-2020-138579
摘要

Background: Several clinical prediction scores have been designed to assess the risk of cancer-associated thrombosis (CAT). The most commonly used in current clinical practice is the Khorana score, however it is applicable only to patients prior to initiation of chemotherapy. We now apply machine learning with clinical, demographic, and genomics parameters to predict CAT events. Methods: The random survival forest (RSF) ensemble learning method was selected to illustrate a machine approach to CAT prediction. The cohort consisted of 14,223 individuals with a solid tumor malignancy and MSK IMPACT somatic genomic data collected during the years 2014 to 2016. CAT was defined as the diagnosis of lower extremity deep vein thrombosis (proximal or distal) or pulmonary embolism, incidental or symptomatic. Covariates considered for inclusion in the model consisted of tumor type, metastatic status, age, exposure to cytotoxic chemotherapy in the month before cohort entry, time elapsed since cancer diagnosis, time elapsed since tumor sampling, normalized mean blood cell counts (white cell count, hemoglobin, platelet count) in the prior 3 months, normalized mean prothrombin time (PT) and activated partial thromboplastin time (aPTT) in the prior 3 months, body mass index (BMI), and presence or absence of a somatic genetic alteration for oncogenes/tumor suppressor genes with an alteration frequency ≥ 1.5% (n = 56). The primary endpoint consisted of time to CAT episode. The C-index for models including different covariates was derived from the test holdout sample using repeated 10-fold cross-validation. The C-index, measuring the relative agreement between the RSF predicted risk and the CAT times of patients, has values between 0.5 and 1.0 with the latter indicating perfect agreement. Results: 12,040 patients were included in the final analysis. There were 855 CAT events during the observation period. The most common tumor types were lung (17%), breast (15%) and colorectal cancer (9%). Blood cell count data and coagulation parameters were missing for 8% and 51% of patients respectively. Using cross-validation, the baseline model with cancer type and metastatic status had a C-index of 0.62 (95% CI = 0.61-0.64), which increased to 0.65 (95% CI = 0.63-0.66) with the addition of chemotherapy, age, time from tissue sampling, time from cancer diagnosis and BMI. Further adding genetic data increased the C-index to 0.68 (95% CI = 0.66-0.69). Replacing genetic data in this model with cell counts and coagulation parameters resulted in a C-index of 0.69 (95% CI = 0.68-0.70). The model with all available covariates had a C-index of 0.70 (95% CI = 0.69-0.71). The cumulative incidence of CAT at 6 months for 5 categories of predicted risk using the model with all available covariates is plotted in Figure A. Scaled Ishwaran-Kogalur Variable Importance (VIMP) values, presented in Figure B, indicate that cancer type and prior chemotherapy are the two top factors for model performance. Conclusions: Machine learning is a promising approach in the search of more accurate and generalizable models for prediction of CAT. In the application described here, the use of random survival forests performed well without information about future chemotherapy administration. Additional work is needed to identify the optimal algorithm and covariates, including better delineation of which cancer genomic information should be retained. Future models will have to be validated independently before being used for patient care. Disclosures Mantha: Physicians Education Resource: Honoraria; MJH Associates: Honoraria. Bolton:GRAIL: Research Funding. Soff:Bristol-Myers Squibb, Pfizer: Honoraria; Dova Pharmaceuticals: Honoraria; Janssen Scientific Affairs: Honoraria; Amgen: Research Funding; Janssen Scientific Affairs: Research Funding; Amgen: Honoraria; Dova Pharmaceuticals: Research Funding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Akim应助汤飞柏采纳,获得10
1秒前
可靠豌豆发布了新的文献求助10
2秒前
大个应助爱听歌笑寒采纳,获得10
2秒前
3秒前
4秒前
orixero应助刀客特幽采纳,获得10
6秒前
加油发布了新的文献求助10
7秒前
SpONGeBOb完成签到 ,获得积分10
7秒前
7秒前
wilson完成签到,获得积分10
7秒前
ZUOWEI发布了新的文献求助10
7秒前
兮兮兮发布了新的文献求助10
7秒前
传奇3应助薄红采纳,获得10
8秒前
华仔应助天空没有极限采纳,获得10
9秒前
阔达斑马应助神勇乐安采纳,获得30
9秒前
11秒前
11秒前
个性的紫菜应助DAN_采纳,获得10
11秒前
汤飞柏发布了新的文献求助10
14秒前
wanci应助liquor采纳,获得10
15秒前
武似星飞完成签到,获得积分10
15秒前
kytsg完成签到 ,获得积分10
19秒前
21秒前
彩色菲鹰完成签到,获得积分10
22秒前
24秒前
qiao应助小林采纳,获得10
24秒前
科研通AI5应助DAN_采纳,获得10
24秒前
清澄完成签到,获得积分10
26秒前
bkagyin应助123采纳,获得10
28秒前
30秒前
彭于晏应助戴帽子的噗噗采纳,获得10
30秒前
30秒前
柏不斜发布了新的文献求助10
30秒前
难过盼海发布了新的文献求助30
31秒前
31秒前
兮兮兮完成签到,获得积分10
34秒前
TYTY发布了新的文献求助10
35秒前
胡子西瓜发布了新的文献求助10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781625
求助须知:如何正确求助?哪些是违规求助? 3327197
关于积分的说明 10230039
捐赠科研通 3042069
什么是DOI,文献DOI怎么找? 1669783
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774