氧化还原
氧化法
过程(计算)
化学
氧化还原
环境化学
化学工程
无机化学
计算机科学
工程类
生物化学
操作系统
作者
Alok D. Bokare,Wonyong Choi
摘要
Oxidative degradation of aqueous organic pollutants, using 4-chlorophenol (4-CP) as a main model substrate, was achieved with the concurrent H2O2-mediated transformation of Cr(III) to Cr(VI). The Fenton-like oxidation of 4-CP is initiated by the reaction between the aquo-complex of Cr(III) and H2O2, which generates HO• along with the stepwise oxidation of Cr(III) to Cr(VI). The Cr(III)/H2O2 system is inactive in acidic condition, but exhibits maximum oxidative capacity at neutral and near-alkaline pH. Since we previously reported that Cr(VI) can also activate H2O2 to efficiently generate HO•, the dual role of H2O2 as an oxidant of Cr(III) and a reductant of Cr(VI) can be utilized to establish a redox cycle of Cr(III)–Cr(VI)–Cr(III). As a result, HO• can be generated using both Cr(III)/H2O2 and Cr(VI)/H2O2 reactions, either concurrently or sequentially. The formation of HO• was confirmed by monitoring the production of p-hydroxybenzoic acid from [benzoic acid + HO•] as a probe reaction and by quenching the degradation of 4-CP in the presence of methanol as a HO• scavenger. The oxidation rate of 4-CP in the Cr(III)/H2O2 solution was highly influenced by pH, which is ascribed to the hydrolysis of CrIII(H2O)n into CrIII(H2O)n-m(OH)m and the subsequent condensation to oligomers. The present study proposes that the Cr(III)/H2O2 combined with Cr(VI)/H2O2 process is a viable advanced oxidation process that operates over a wide pH range using the reusable redox cycle of Cr(III) and Cr(VI).
科研通智能强力驱动
Strongly Powered by AbleSci AI