Serum metabolomic and lipidomic profiling identifies diagnostic biomarkers for seropositive and seronegative rheumatoid arthritis patients

代谢组学 医学 类风湿性关节炎 脂类学 疾病 组学 代谢组 内科学 免疫学 生物信息学 生物
作者
Hemi Luan,Wanjian Gu,Hua Li,Zi Wang,Lu Lu,Mengying Ke,Jiawei Lu,Wenjun Chen,Zhangzhang Lan,Yanlin Xiao,Jinyue Xu,Yi Zhang,Zongwei Cai,Shijia Liu,Wenyong Zhang
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:19 (1) 被引量:50
标识
DOI:10.1186/s12967-021-03169-7
摘要

Abstract Background Diagnosing seronegative rheumatoid arthritis (RA) can be challenging due to complex diagnostic criteria. We sought to discover diagnostic biomarkers for seronegative RA cases by studying metabolomic and lipidomic changes in RA patient serum. Methods We performed comprehensive metabolomic and lipidomic profiling in serum of 225 RA patients and 100 normal controls. These samples were divided into a discovery set (n = 243) and a validation set (n = 82). A machine-learning-based multivariate classification model was constructed using distinctive metabolites and lipids signals. Results Twenty-six metabolites and lipids were identified from the discovery cohort to construct a RA diagnosis model. The model was subsequently tested on a validation set and achieved accuracy of 90.2%, with sensitivity of 89.7% and specificity of 90.6%. Both seropositive and seronegative patients were identified using this model. A co-occurrence network using serum omics profiles was built and parsed into six modules, showing significant association between the inflammation and immune activity markers and aberrant metabolism of energy metabolism, lipids metabolism and amino acid metabolism. Acyl carnitines (20:3), aspartyl-phenylalanine, pipecolic acid, phosphatidylethanolamine PE (18:1) and lysophosphatidylethanolamine LPE (20:3) were positively correlated with the RA disease activity, while histidine and phosphatidic acid PA (28:0) were negatively correlated with the RA disease activity. Conclusions A panel of 26 serum markers were selected from omics profiles to build a machine-learning-based prediction model that could aid in diagnosing seronegative RA patients. Potential markers were also identified in stratifying RA cases based on disease activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
vae完成签到,获得积分10
1秒前
开放世界完成签到,获得积分10
1秒前
1秒前
1秒前
叶远望完成签到 ,获得积分10
1秒前
金虎完成签到,获得积分10
2秒前
CH完成签到 ,获得积分10
2秒前
2秒前
邵树杰发布了新的文献求助10
2秒前
Luna发布了新的文献求助10
3秒前
sgt发布了新的文献求助10
4秒前
Bobo完成签到,获得积分10
4秒前
张文博完成签到,获得积分10
5秒前
竹子完成签到,获得积分10
5秒前
群山完成签到 ,获得积分10
7秒前
HDrinnk完成签到,获得积分10
9秒前
小婕是小婕完成签到,获得积分10
9秒前
欣喜柚子完成签到 ,获得积分10
10秒前
乐乐应助Lucy采纳,获得30
11秒前
南城花开完成签到 ,获得积分10
11秒前
科研小破白菜完成签到,获得积分10
12秒前
桐桐完成签到,获得积分0
12秒前
无心的仙人掌完成签到,获得积分20
12秒前
12秒前
我睡觉的时候不困完成签到 ,获得积分10
13秒前
pericles完成签到,获得积分10
14秒前
15秒前
15秒前
cdercder应助灵巧的导师采纳,获得10
15秒前
坤坤完成签到,获得积分10
15秒前
15秒前
16秒前
sgt完成签到,获得积分10
17秒前
pericles发布了新的文献求助10
18秒前
专注雨珍发布了新的文献求助10
19秒前
动漫大师发布了新的文献求助10
20秒前
水本无忧87完成签到,获得积分10
20秒前
bc应助fxx采纳,获得20
20秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330869
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763743