Preparation and thermoelectric properties of Mn<sub>3</sub>As<sub>2</sub>-doped Cd<sub>3</sub>As<sub>2</sub> nanostructures

材料科学 兴奋剂 烧结 分析化学(期刊) 化学 冶金 色谱法 光电子学
作者
Shangfeng Chen,Naikun Sun,Xianmin Zhang,Kai Wang,Wu Li,Han Yan,Lijun Wu,Qin Dai,School of Science, Shenyang Ligong University, Shenyang 110159, China,Key Laboratory for Anisotropy and Texture of Materials from Ministry of Education, School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:71 (18): 187201-187201
标识
DOI:10.7498/aps.71.20220584
摘要

Cd<sub>3</sub>As<sub>2</sub>, especially its various nanostructures, has been considered as an excellent candidate for application in novel optoelectronic devices due to its ultrahigh mobility and good air-stability. Recent researches exhibited Cd<sub>3</sub>As<sub>2</sub> as a candidate of thermoelectric materials by virtue of its ultralow thermal conductivity in comparison with other semimetals or metals. In this work, at first <b>(</b> Cd<sub>1–<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>3</sub>As<sub>2</sub> (<i>x</i> = 0, 0.05, 0.1) bulk alloys are prepared by high-pressure sintering to suppress the volatilization of As element, and then several kinds of Mn<sub>3</sub>As<sub>2</sub>-doped Cd<sub>3</sub>As<sub>2</sub> nanostructures are obtained on mica substrates by chemical vapor deposition (CVD), with bamboo-shoot-nanowire structure forming in a high-temperature region and films in a low-temperature region. Effects of Mn<sub>3</sub>As<sub>2</sub> doping on the crystalline structure, phase compositions, microstructures and thermoelectric properties of the Cd<sub>3</sub>As<sub>2</sub> nanostructures are systematically studied. Energy-dispersive spectrometer (EDS) analysis at various typical positions of the Mn<sub>3</sub>As<sub>2</sub>-doped Cd<sub>3</sub>As<sub>2</sub> nanostructures shows that the Mn content in these nanostructures is in a range of 0.02%–0.18% (atomic percent), which is much lower than the Mn content in <b>(</b> Cd<sub>1–<i>x</i></sub>Mn<sub><i>x</i></sub>)<sub>3</sub>As<sub>2</sub> (<i>x</i> = 0, 0.05, 0.1) parent alloys. The main phases of these nanostructures are all body centered tetragonal <i>α</i> phase with a small amount of primitive tetragonal <i>α</i>′ phase. Doping results in the <i>α</i>″ phase and Mn<sub>2</sub>As impurity phase occurring. The Cd<sub>3</sub>As<sub>2</sub> film presents a self-assembled cauliflower microstructure. Upon Mn<sub>3</sub>As<sub>2</sub> doping, this morphology finally transforms into a vertical-growth seashell structure. In a high temperature region of the mica substrate, a unique bamboo-shoot-nanowire structure is formed, with vertical-growth bamboo shoots connected by nanowires, and at the end of these nanowires grows a white pentagonal flower structure with the highest Mn content of 0.18% (atomic percent) for all the nanostructures. Conductivity of the Cd<sub>3</sub>As<sub>2</sub> film and the bamboo-shoot-nanowire structure are ~20 and 320 S/cm, respectively. The remarkable conductivity enhancement can be attributed to higher crystallinity and the formation of nanowire conductive network, which significantly increase carrier concentration and Hall mobility. The Hall mobility values of the nanowire structures range from 2271 to 3048 cm<sup>2</sup>/(V·s) much higher than the values of 378–450 cm<sup>2</sup>/(V·s) for the films. The Seebeck coefficient for the bamboo-shoot-nanowire structure is in a range of 59–68 µV/K, which is about 15% higher than those for the films (50–61 µV/K). Although maximal power factor of the bamboo-shoot-nanowire structure is 14 times as high as that of the thin film, reaching 0.144 mW/(m·K<sup>2</sup>) at room temperature, this value is still one order of magnitude lower than the previously reported value of 1.58 mW/(m·K<sup>2</sup>) for Cd<sub>3</sub>As<sub>2</sub> single crystal.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
客念完成签到 ,获得积分10
1秒前
思源应助向前看采纳,获得10
2秒前
2秒前
2秒前
3秒前
小雨发布了新的文献求助10
3秒前
3秒前
核桃发布了新的文献求助10
4秒前
4秒前
4秒前
Jasper应助西子阳采纳,获得10
5秒前
liwei发布了新的文献求助10
5秒前
猫车高手发布了新的文献求助10
6秒前
无花果应助关心则乱采纳,获得10
6秒前
丘比特应助leo采纳,获得10
6秒前
Wu发布了新的文献求助10
6秒前
苏碧萱发布了新的文献求助10
7秒前
小喜完成签到,获得积分10
7秒前
happiness发布了新的文献求助10
7秒前
酷波er应助睿智鱼仔采纳,获得10
7秒前
7秒前
7秒前
Chu发布了新的文献求助10
7秒前
邓紫棋发布了新的文献求助10
8秒前
8秒前
烟花应助武鑫跃采纳,获得10
8秒前
8秒前
Jangz完成签到,获得积分10
8秒前
Lsy发布了新的文献求助10
8秒前
SciGPT应助zyyym采纳,获得10
9秒前
小文发布了新的文献求助10
9秒前
LWL完成签到,获得积分10
9秒前
李爱国应助Rubia采纳,获得10
9秒前
12秒前
12秒前
Forrr发布了新的文献求助10
12秒前
Tao发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293