Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer

医学 前列腺癌 对比度(视觉) 前列腺 放射科 多参数磁共振成像 磁共振成像 癌症 医学物理学 人工智能 内科学 计算机科学
作者
Hongyan Huang,Junyang Mo,Zhiguang Ding,Xuehua Peng,Ruihao Liu,Danping Zhuang,Yu‐Zhong Zhang,Genwen Hu,Bingsheng Huang,Yingwei Qiu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:314 (1) 被引量:3
标识
DOI:10.1148/radiol.240238
摘要

Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1. Materials and Methods Male patients with suspected prostate cancer who underwent multiparametric MRI were retrospectively included from three centers from April 2020 to April 2023. A deep learning model (pix2pix algorithm) was trained to synthesize contrast-enhanced MRI scans from four noncontrast MRI sequences (T1-weighted imaging, T2-weighted imaging, diffusion-weighted imaging, and apparent diffusion coefficient maps) and then tested on an internal and two external datasets. The reference standard for model training was the second postcontrast phase of the dynamic contrast-enhanced sequence. Similarity between simulated and acquired contrast-enhanced images was evaluated using the multiscale structural similarity index. Three radiologists independently scored T2-weighted and diffusion-weighted MRI with either simulated or acquired contrast-enhanced images using PI-RADS, version 2.1; agreement was assessed with Cohen κ. Results A total of 567 male patients (mean age, 66 years ± 11 [SD]) were divided into a training test set (n = 244), internal test set (n = 104), external test set 1 (n = 143), and external test set 2 (n = 76). Simulated and acquired contrast-enhanced images demonstrated high similarity (multiscale structural similarity index: 0.82, 0.71, and 0.69 for internal test set, external test set 1, and external test set 2, respectively) with excellent reader agreement of PI-RADS scores (Cohen κ, 0.96; 95% CI: 0.94, 0.98). When simulated contrast-enhanced imaging was added to biparametric MRI, 34 of 323 (10.5%) patients were upgraded to PI-RADS 4 from PI-RADS 3. Conclusion It was feasible to generate simulated contrast-enhanced prostate MRI using deep learning. The simulated and acquired contrast-enhanced MRI scans exhibited high similarity and demonstrated excellent agreement in assessing clinically significant prostate cancer based on PI-RADS, version 2.1. © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Neji and Goh in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
意志所向发布了新的文献求助10
刚刚
刻苦的三问应助C.Z.Young采纳,获得10
1秒前
1秒前
嘤嘤嘤嘤嘤嘤嘤完成签到,获得积分10
1秒前
1秒前
liuyan432发布了新的文献求助10
1秒前
the lu发布了新的文献求助10
2秒前
3秒前
lee给lee的求助进行了留言
3秒前
毛77完成签到,获得积分10
4秒前
4秒前
yxli完成签到,获得积分10
4秒前
4秒前
完美世界应助元煜祺采纳,获得30
4秒前
dreamy4869完成签到,获得积分10
4秒前
4秒前
Schnappi完成签到,获得积分10
5秒前
英姑应助大力的依丝采纳,获得10
5秒前
5秒前
dd完成签到,获得积分10
5秒前
乐乐应助刘旭阳采纳,获得10
5秒前
寒冷的沛珊完成签到,获得积分10
5秒前
左西完成签到 ,获得积分10
5秒前
eyu完成签到,获得积分10
6秒前
雷霆嘎巴完成签到,获得积分10
6秒前
林夕完成签到,获得积分10
6秒前
无期发布了新的文献求助10
6秒前
香蕉发夹完成签到,获得积分10
6秒前
7秒前
yes完成签到 ,获得积分10
7秒前
Xiangguang完成签到,获得积分10
7秒前
霍霍完成签到 ,获得积分10
7秒前
桐桐应助yyyy采纳,获得10
7秒前
lida发布了新的文献求助10
7秒前
gxj完成签到,获得积分10
7秒前
rat完成签到,获得积分10
8秒前
liuyan432完成签到,获得积分10
8秒前
我是老大应助yxli采纳,获得10
8秒前
9秒前
徐昊雯发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
A Systemic-Functional Study of Language Choice in Singapore 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4871455
求助须知:如何正确求助?哪些是违规求助? 4161551
关于积分的说明 12905956
捐赠科研通 3917702
什么是DOI,文献DOI怎么找? 2151097
邀请新用户注册赠送积分活动 1169544
关于科研通互助平台的介绍 1073303