Deep Learning to Simulate Contrast-Enhanced MRI for Evaluating Suspected Prostate Cancer

医学 前列腺癌 对比度(视觉) 前列腺 放射科 多参数磁共振成像 磁共振成像 癌症 医学物理学 人工智能 内科学 计算机科学
作者
Hongyan Huang,Junyang Mo,Zhiguang Ding,Xuehua Peng,Ruihao Liu,Danping Zhuang,Yu‐Zhong Zhang,Genwen Hu,Bingsheng Huang,Yingwei Qiu
出处
期刊:Radiology [Radiological Society of North America]
卷期号:314 (1) 被引量:1
标识
DOI:10.1148/radiol.240238
摘要

Background Multiparametric MRI, including contrast-enhanced sequences, is recommended for evaluating suspected prostate cancer, but concerns have been raised regarding potential contrast agent accumulation and toxicity. Purpose To evaluate the feasibility of generating simulated contrast-enhanced MRI from noncontrast MRI sequences using deep learning and to explore their potential value for assessing clinically significant prostate cancer using Prostate Imaging Reporting and Data System (PI-RADS) version 2.1. Materials and Methods Male patients with suspected prostate cancer who underwent multiparametric MRI were retrospectively included from three centers from April 2020 to April 2023. A deep learning model (pix2pix algorithm) was trained to synthesize contrast-enhanced MRI scans from four noncontrast MRI sequences (T1-weighted imaging, T2-weighted imaging, diffusion-weighted imaging, and apparent diffusion coefficient maps) and then tested on an internal and two external datasets. The reference standard for model training was the second postcontrast phase of the dynamic contrast-enhanced sequence. Similarity between simulated and acquired contrast-enhanced images was evaluated using the multiscale structural similarity index. Three radiologists independently scored T2-weighted and diffusion-weighted MRI with either simulated or acquired contrast-enhanced images using PI-RADS, version 2.1; agreement was assessed with Cohen κ. Results A total of 567 male patients (mean age, 66 years ± 11 [SD]) were divided into a training test set (n = 244), internal test set (n = 104), external test set 1 (n = 143), and external test set 2 (n = 76). Simulated and acquired contrast-enhanced images demonstrated high similarity (multiscale structural similarity index: 0.82, 0.71, and 0.69 for internal test set, external test set 1, and external test set 2, respectively) with excellent reader agreement of PI-RADS scores (Cohen κ, 0.96; 95% CI: 0.94, 0.98). When simulated contrast-enhanced imaging was added to biparametric MRI, 34 of 323 (10.5%) patients were upgraded to PI-RADS 4 from PI-RADS 3. Conclusion It was feasible to generate simulated contrast-enhanced prostate MRI using deep learning. The simulated and acquired contrast-enhanced MRI scans exhibited high similarity and demonstrated excellent agreement in assessing clinically significant prostate cancer based on PI-RADS, version 2.1. © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Neji and Goh in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keisuke33发布了新的文献求助10
刚刚
猪猪hero发布了新的文献求助30
1秒前
吾身无拘完成签到,获得积分10
2秒前
安详的觅风完成签到,获得积分10
2秒前
活泼稀发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
望舒完成签到 ,获得积分10
4秒前
4秒前
wz完成签到 ,获得积分10
5秒前
风云鱼发布了新的文献求助10
5秒前
酷波er应助熊子文采纳,获得10
5秒前
6秒前
ding应助钰钰yuyu采纳,获得10
7秒前
susu完成签到,获得积分10
7秒前
羽客发布了新的文献求助10
7秒前
7秒前
7秒前
科研一路生花完成签到,获得积分10
8秒前
modesty发布了新的文献求助10
8秒前
lqy完成签到 ,获得积分10
8秒前
icarus完成签到,获得积分20
9秒前
鹤鸣完成签到,获得积分10
11秒前
怕黑凝海完成签到,获得积分10
11秒前
11秒前
汉堡包应助Gueyao采纳,获得10
11秒前
Qintt发布了新的文献求助10
12秒前
14秒前
乔达摩悉达多完成签到 ,获得积分10
14秒前
八号向日葵完成签到 ,获得积分10
15秒前
潇洒冬瓜完成签到,获得积分10
15秒前
1111发布了新的文献求助10
15秒前
凉翊完成签到,获得积分10
15秒前
modesty完成签到,获得积分20
15秒前
17秒前
金虎完成签到,获得积分10
17秒前
风云鱼完成签到,获得积分10
18秒前
22秒前
羽客发布了新的文献求助10
23秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906161
求助须知:如何正确求助?哪些是违规求助? 3451779
关于积分的说明 10866397
捐赠科研通 3177280
什么是DOI,文献DOI怎么找? 1755311
邀请新用户注册赠送积分活动 848738
科研通“疑难数据库(出版商)”最低求助积分说明 791246