Let’s Discover More API Relations: A Large Language Model-based AI Chain for Unsupervised API Relation Inference

计算机科学 推论 关系(数据库) 人工智能 程序设计语言 自然语言处理 数据挖掘
作者
Qing Huang,Yanbang Sun,Zhenchang Xing,Yuanlong Cao,Jieshan Chen,Xiwei Xu,Huan Jin,Jiaxing Lu
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
被引量:1
标识
DOI:10.1145/3680469
摘要

APIs have intricate relations that can be described in text and represented as knowledge graphs to aid software engineering tasks. Existing relation extraction methods have limitations, such as limited API text corpus and affected by the characteristics of the input text. To address these limitations, we propose utilizing large language models (LLMs) (e.g., gpt-3.5) as a neural knowledge base for API relation inference. This approach leverages the entire Web used to pre-train LLMs as a knowledge base and is insensitive to the context and complexity of input texts. To ensure accurate inference, we design an AI chain consisting of three AI modules: API Fully Qualified Name (FQN) Parser, API Knowledge Extractor, and API Relation Decider. The accuracy of the API FQN Parser and API Relation Decider is 0.81 and 0.83, respectively. Using the generative capacity of the LLM and our approach’s inference capability, we achieve an average F1 value of 0.76 under the three datasets, significantly higher than the state-of-the-art method’s average F1 value of 0.40. Compared to the original CoT and modularized CoT methods, our AI chain design has improved the performance of API relation inference by 71% and 49%, respectively. Meanwhile, the prompt ensembling strategy enhances the performance of our approach by 32%. The API relations inferred by our method can be further organized into structured forms to provide support for other software engineering tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助xiaoguan采纳,获得10
刚刚
liukang172完成签到,获得积分10
2秒前
心心哈完成签到 ,获得积分10
2秒前
2秒前
科研牛马完成签到,获得积分10
2秒前
破风老司机完成签到,获得积分10
3秒前
Epiphany完成签到 ,获得积分10
3秒前
3秒前
danjuan发布了新的文献求助30
4秒前
深情安青应助Tzzl0226采纳,获得10
5秒前
爆米花应助复杂的皮卡丘采纳,获得10
6秒前
wb完成签到,获得积分10
7秒前
雪白的臻完成签到,获得积分10
8秒前
MengFantao发布了新的文献求助10
9秒前
凡人完成签到,获得积分10
10秒前
FashionBoy应助pure采纳,获得10
10秒前
大鹏完成签到,获得积分0
10秒前
12秒前
南瓜猪猪头完成签到 ,获得积分10
13秒前
陈昭琼发布了新的文献求助10
15秒前
帅帅哈完成签到,获得积分10
17秒前
17秒前
小二郎应助负责玉米采纳,获得10
17秒前
乐乐应助温暖芷文采纳,获得10
18秒前
fanconi完成签到 ,获得积分10
19秒前
19秒前
19秒前
WenHT发布了新的文献求助10
21秒前
lpx43发布了新的文献求助10
21秒前
21秒前
顾矜应助点点采纳,获得10
21秒前
所所应助Leeyee采纳,获得10
22秒前
23秒前
李永波发布了新的文献求助10
23秒前
织心发布了新的文献求助10
23秒前
VDC发布了新的文献求助10
24秒前
Jasper应助萧衍采纳,获得10
24秒前
26秒前
小贾博士完成签到 ,获得积分10
26秒前
NADPH发布了新的文献求助10
27秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800113
求助须知:如何正确求助?哪些是违规求助? 3345405
关于积分的说明 10324832
捐赠科研通 3061903
什么是DOI,文献DOI怎么找? 1680581
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763509