MATNet: multiattention Transformer network for cropland semantic segmentation in remote sensing images

分割 遥感 计算机科学 变压器 地理 人工智能 计算机视觉 地图学 工程类 电气工程 电压
作者
Zixuan Zhang,Liang Huang,Bo‐Hui Tang,Weipeng Le,Meiqi Wang,Jiapei Cheng,Qiang Wu
出处
期刊:International Journal of Digital Earth [Taylor & Francis]
卷期号:17 (1) 被引量:1
标识
DOI:10.1080/17538947.2024.2392845
摘要

Remote sensing image semantic segmentation methods have become the main approach for extracting cropland information. However, in the mountainous regions of southwestern China, croplands exhibit narrow and fragmented shapes, as well as complex planting patterns, making it difficult for traditional semantic segmentation methods to accurately delineate fine-grained cropland boundaries. To address these challenges, a multiattention Transformer network named MATNet is proposed in this paper, for fine-grained extraction of cropland at the parcel level in complex scenes. MATNet built upon the fusion of CNN encoder and Transformer decoder. In the encoder, spatial and channel reconstruction units are introduced, reducing information redundancy in the convolutional layers. The Transformer decoder incorporates multiple attention mechanisms, this design feature enhances the attention window's perception of local content and improves the model's ability to extract features from fine-grained cropland parcels through optimized computationnal al location. Taking the experimental results of the Dali cropland dataset as an illustration, MATNet achieved the highest values across five evaluation metrics, including mIoU. Specifically, the Recall, F1, and mIoU scores were 94.68%, 94.69%, and 89.92%, respectively. Compared with six other advanced models, MATNet consistently performed best in terms of extracting fine-grained cropland parcels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiao应助十一采纳,获得10
1秒前
xiyou完成签到,获得积分10
1秒前
hamier完成签到,获得积分10
1秒前
LI关注了科研通微信公众号
2秒前
2秒前
2秒前
kls完成签到,获得积分10
3秒前
4秒前
4秒前
yk32315完成签到,获得积分10
4秒前
mylaodao完成签到,获得积分0
4秒前
李双艳发布了新的文献求助10
5秒前
Carina_S发布了新的文献求助10
5秒前
离开土豆完成签到,获得积分10
5秒前
所所应助愉快的花卷采纳,获得10
5秒前
归尘发布了新的文献求助10
5秒前
7秒前
TAA66发布了新的文献求助10
7秒前
叮叮当发布了新的文献求助10
8秒前
8秒前
9秒前
乐乐应助香蕉静芙采纳,获得10
10秒前
12秒前
14秒前
Iloveyou发布了新的文献求助10
14秒前
shlw发布了新的文献求助10
16秒前
十一发布了新的文献求助10
18秒前
19秒前
19秒前
bkagyin应助曾婉之小汁采纳,获得10
22秒前
李双艳完成签到,获得积分10
23秒前
扳迪发布了新的文献求助10
23秒前
Iloveyou完成签到,获得积分10
24秒前
jxp完成签到,获得积分10
24秒前
hz_sz完成签到,获得积分10
24秒前
24秒前
27秒前
南湖秋水发布了新的文献求助10
30秒前
小二郎应助大小可爱采纳,获得10
31秒前
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785889
求助须知:如何正确求助?哪些是违规求助? 3331309
关于积分的说明 10250909
捐赠科研通 3046810
什么是DOI,文献DOI怎么找? 1672193
邀请新用户注册赠送积分活动 801094
科研通“疑难数据库(出版商)”最低求助积分说明 759994